Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshitaka Miyagawa is active.

Publication


Featured researches published by Yoshitaka Miyagawa.


Molecular Therapy | 2011

Efficient Generation of Hepatoblasts From Human ES Cells and iPS Cells by Transient Overexpression of Homeobox Gene HEX

Mitsuru Inamura; Kenji Kawabata; Kazuo Takayama; Katsuhisa Tashiro; Fuminori Sakurai; Kazufumi Katayama; Masashi Toyoda; Hidenori Akutsu; Yoshitaka Miyagawa; Hajime Okita; Nobutaka Kiyokawa; Akihiro Umezawa; Takao Hayakawa; Miho K. Furue; Hiroyuki Mizuguchi

Human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the potential to differentiate into all cell lineages, including hepatocytes, in vitro. Induced hepatocytes have a wide range of potential application in biomedical research, drug discovery, and the treatment of liver disease. However, the existing protocols for hepatic differentiation of PSCs are not very efficient. In this study, we developed an efficient method to induce hepatoblasts, which are progenitors of hepatocytes, from human ESCs and iPSCs by overexpression of the HEX gene, which is a homeotic gene and also essential for hepatic differentiation, using a HEX-expressing adenovirus (Ad) vector under serum/feeder cell-free chemically defined conditions. Ad-HEX-transduced cells expressed α-fetoprotein (AFP) at day 9 and then expressed albumin (ALB) at day 12. Furthermore, the Ad-HEX-transduced cells derived from human iPSCs also produced several cytochrome P450 (CYP) isozymes, and these P450 isozymes were capable of converting the substrates to metabolites and responding to the chemical stimulation. Our differentiation protocol using Ad vector-mediated transient HEX transduction under chemically defined conditions efficiently generates hepatoblasts from human ESCs and iPSCs. Thus, our methods would be useful for not only drug screening but also therapeutic applications.


Molecular and Cellular Biology | 2008

Inducible Expression of Chimeric EWS/ETS Proteins Confers Ewing's Family Tumor-Like Phenotypes to Human Mesenchymal Progenitor Cells

Yoshitaka Miyagawa; Hajime Okita; Hideki Nakaijima; Yasuomi Horiuchi; Ban Sato; Tomoko Taguchi; Masashi Toyoda; Yohko U. Katagiri; Junichiro Fujimoto; Jun-ichi Hata; Akihiro Umezawa; Nobutaka Kiyokawa

ABSTRACT Ewings family tumor (EFT) is a rare pediatric tumor of unclear origin that occurs in bone and soft tissue. Specific chromosomal translocations found in EFT cause EWS to fuse to a subset of ets transcription factor genes (ETS), generating chimeric EWS/ETS proteins. These proteins are believed to play a crucial role in the onset and progression of EFT. However, the mechanisms responsible for the EWS/ETS-mediated onset remain unclear. Here we report the establishment of a tetracycline-controlled EWS/ETS-inducible system in human bone marrow-derived mesenchymal progenitor cells (MPCs). Ectopic expression of both EWS/FLI1 and EWS/ERG proteins resulted in a dramatic change of morphology, i.e., from a mesenchymal spindle shape to a small round-to-polygonal cell, one of the characteristics of EFT. EWS/ETS also induced immunophenotypic changes in MPCs, including the disappearance of the mesenchyme-positive markers CD10 and CD13 and the up-regulation of the EFT-positive markers CD54, CD99, CD117, and CD271. Furthermore, a prominent shift from the gene expression profile of MPCs to that of EFT was observed in the presence of EWS/ETS. Together with the observation that EWS/ETS enhances the ability of cells to invade Matrigel, these results suggest that EWS/ETS proteins contribute to alterations of cellular features and confer an EFT-like phenotype to human MPCs.


Genes to Cells | 2009

Efficient reprogramming of human and mouse primary extra-embryonic cells to pluripotent stem cells

Shogo Nagata; Masashi Toyoda; Shinpei Yamaguchi; Kunio Hirano; Hatsune Makino; Koichiro Nishino; Yoshitaka Miyagawa; Hajime Okita; Nobutaka Kiyokawa; Masato Nakagawa; Shinya Yamanaka; Hidenori Akutsu; Akihiro Umezawa; Takashi Tada

Practical clinical applications for current induced pluripotent stem cell (iPSC) technologies are hindered by very low generation efficiencies. Here, we demonstrate that newborn human (h) and mouse (m) extra‐embryonic amnion (AM) and yolk‐sac (YS) cells, in which endogenous KLF4/Klf4, c‐MYC/c‐Myc and RONIN/Ronin are expressed, can be reprogrammed to hiPSCs and miPSCs with efficiencies for AM cells of 0.02% and 0.1%, respectively. Both hiPSC and miPSCs are indistinguishable from embryonic stem cells in colony morphology, expression of pluripotency markers, global gene expression profile, DNA methylation status of OCT4 and NANOG, teratoma formation and, in the case of miPSCs, generation of germline transmissible chimeric mice. As copious amounts of human AM cells can be collected without invasion, and stored long term by conventional means without requirement for in vitro culture, they represent an ideal source for cell banking and subsequent ‘on demand’ generation of hiPSCs for personal regenerative and pharmaceutical applications.


Blood | 2010

Aberrant induction of LMO2 by the E2A-HLF chimeric transcription factor and its implication in leukemogenesis of B-precursor ALL with t(17;19)

Kinuko Hirose; Takeshi Inukai; Jiro Kikuchi; Yusuke Furukawa; Tomokatsu Ikawa; Hiroshi Kawamoto; S. Helen Oram; Berthold Göttgens; Nobutaka Kiyokawa; Yoshitaka Miyagawa; Hajime Okita; Koshi Akahane; Xiaochun Zhang; Itaru Kuroda; Hiroko Honna; Keiko Kagami; Kumiko Goi; Hidemitsu Kurosawa; A. Thomas Look; Hirotaka Matsui; Toshiya Inaba; Kanji Sugita

LMO2, a critical transcription regulator of hematopoiesis, is involved in human T-cell leukemia. The binding site of proline and acidic amino acid-rich protein (PAR) transcription factors in the promoter of the LMO2 gene plays a central role in hematopoietic-specific expression. E2A-HLF fusion derived from t(17;19) in B-precursor acute lymphoblastic leukemia (ALL) has the transactivation domain of E2A and the basic region/leucine zipper domain of HLF, which is a PAR transcription factor, raising the possibility that E2A-HLF aberrantly induces LMO2 expression. We here demonstrate that cell lines and a primary sample of t(17;19)-ALL expressed LMO2 at significantly higher levels than other B-precursor ALLs did. Transfection of E2A-HLF into a non-t(17;19) B-precursor ALL cell line induced LMO2 gene expression that was dependent on the DNA-binding and transactivation activities of E2A-HLF. The PAR site in the LMO2 gene promoter was critical for E2A-HLF-induced LMO2 expression. Gene silencing of LMO2 in a t(17;19)-ALL cell line by short hairpin RNA induced apoptotic cell death. These observations indicated that E2A-HLF promotes cell survival of t(17;19)-ALL cells by aberrantly up-regulating LMO2 expression. LMO2 could be a target for a new therapeutic modality for extremely chemo-resistant t(17;19)-ALL.


Experimental Cell Research | 2009

Mesenchymal to embryonic incomplete transition of human cells by chimeric OCT4/3 (POU5F1) with physiological co-activator EWS

Hatsune Makino; Masashi Toyoda; Kenji Matsumoto; Hirohisa Saito; Koichiro Nishino; Yoshihiro Fukawatase; Masakazu Machida; Hidenori Akutsu; Taro Uyama; Yoshitaka Miyagawa; Hajime Okita; Nobutaka Kiyokawa; Takashi Fujino; Yuichi Ishikawa; Takuro Nakamura; Akihiro Umezawa

POU5F1 (more commonly known as OCT4/3) is one of the stem cell markers, and affects direction of differentiation in embryonic stem cells. To investigate whether cells of mesenchymal origin acquire embryonic phenotypes, we generated human cells of mesodermal origin with overexpression of the chimeric OCT4/3 gene with physiological co-activator EWS (product of the EWSR1 gene), which is driven by the potent EWS promoter by translocation. The cells expressed embryonic stem cell genes such as NANOG, lost mesenchymal phenotypes, and exhibited embryonal stem cell-like alveolar structures when implanted into the subcutaneous tissue of immunodeficient mice. Hierarchical analysis by microchip analysis and cell surface analysis revealed that the cells are subcategorized into the group of human embryonic stem cells and embryonal carcinoma cells. These results imply that cells of mesenchymal origin can be traced back to cells of embryonic phenotype by the OCT4/3 gene in collaboration with the potent cis-regulatory element and the fused co-activator. The cells generated in this study with overexpression of chimeric OCT4/3 provide us with insight into cell plasticity involving OCT4/3 that is essential for embryonic cell maintenance, and the complexity required for changing cellular identity.


PLOS ONE | 2010

Defining Hypo-Methylated Regions of Stem Cell-Specific Promoters in Human iPS Cells Derived from Extra-Embryonic Amnions and Lung Fibroblasts

Koichiro Nishino; Masashi Toyoda; Mayu Yamazaki-Inoue; Hatsune Makino; Yoshihiro Fukawatase; Emi Chikazawa; Yoriko Takahashi; Yoshitaka Miyagawa; Hajime Okita; Nobutaka Kiyokawa; Hidenori Akutsu; Akihiro Umezawa

Background Human induced pluripotent stem (iPS) cells are currently used as powerful resources in regenerative medicine. During very early developmental stages, DNA methylation decreases to an overall low level at the blastocyst stage, from which embryonic stem cells are derived.Therefore, pluripotent stem cells, such as ES and iPS cells, are considered to have hypo-methylated status compared to differentiated cells. However, epigenetic mechanisms of “stemness” remain unknown in iPS cells derived from extra-embryonic and embryonic cells. Methodology/Principal Findings We examined genome-wide DNA methylation (24,949 CpG sites covering 1,3862 genes, mostly selected from promoter regions) with six human iPS cell lines derived from human amniotic cells and fetal lung fibroblasts as well as two human ES cell lines, and eight human differentiated cell lines using Illuminas Infinium HumanMethylation27. A considerable fraction (807 sites) exhibited a distinct difference in the methylation level between the iPS/ES cells and differentiated cells, with 87.6% hyper-methylation seen in iPS/ES cells. However, a limited fraction of CpG sites with hypo-methylation was found in promoters of genes encoding transcription factors. Thus, a group of genes becomes active through a decrease of methylation in their promoters. Twenty-three genes including SOX15, SALL4, TDGF1, PPP1R16B and SOX10 as well as POU5F1 were defined as genes with hypo-methylated SS-DMR (Stem cell-Specific Differentially Methylated Region) and highly expression in iPS/ES cells. Conclusions/Significance We show that DNA methylation profile of human amniotic iPS cells as well as fibroblast iPS cells, and defined the SS-DMRs. Knowledge of epigenetic information across iPS cells derived from different cell types can be used as a signature for “stemness” and may allow us to screen for optimum iPS/ES cells and to validate and monitor iPS/ES cell derivatives for human therapeutic applications.


BMC Systems Biology | 2011

Possible linkages between the inner and outer cellular states of human induced pluripotent stem cells

Shigeru Saito; Yasuko Onuma; Yuzuru Ito; Hiroaki Tateno; Masashi Toyoda; Akutsu Hidenori; Koichiro Nishino; Emi Chikazawa; Yoshihiro Fukawatase; Yoshitaka Miyagawa; Hajime Okita; Nobutaka Kiyokawa; Yoh-ichi Shimma; Akihiro Umezawa; Jun Hirabayashi; Katsuhisa Horimoto; Makoto Asashima

BackgroundHuman iPS cells (hiPSCs) have attracted considerable attention for applications to drug screening and analyses of disease mechanisms, and even as next generation materials for regenerative medicine. Genetic reprogramming of human somatic cells to a pluripotent state was first achieved by the ectopic expression of four factors (Sox2, Oct4, Klf4 and c-Myc), using a retrovirus. Subsequently, this method was applied to various human cells, using different combinations of defined factors. However, the transcription factor-induced acquisition of replication competence and pluripotency raises the question as to how exogenous factors induce changes in the inner and outer cellular states.ResultsWe analyzed both the RNA profile, to reveal changes in gene expression, and the glycan profile, to identify changes in glycan structures, between 51 cell samples of four parental somatic cell (SC) lines from amniotic mesodermal, placental artery endothelial, and uterine endometrium sources, fetal lung fibroblast (MRC-5) cells, and nine hiPSC lines that were originally established. The analysis of this information by standard statistical techniques combined with a network approach, named network screening, detected significant expression differences between the iPSCs and the SCs. Subsequent network analysis of the gene expression and glycan signatures revealed that the glycan transfer network is associated with known epitopes for differentiation, e.g., the SSEA epitope family in the glycan biosynthesis pathway, based on the characteristic changes in the cellular surface states of the hiPSCs.ConclusionsThe present study is the first to reveal the relationships between gene expression patterns and cell surface changes in hiPSCs, and reinforces the importance of the cell surface to identify established iPSCs from SCs. In addition, given the variability of iPSCs, which is related to the characteristics of the parental SCs, a glycosyltransferase expression assay might be established to define hiPSCs more precisely and thus facilitate their standardization, which are important steps towards the eventual therapeutic applications of hiPSCs.


PLOS ONE | 2009

EWS/ETS Regulates the Expression of the Dickkopf Family in Ewing Family Tumor Cells

Yoshitaka Miyagawa; Hajime Okita; Mitsuko Itagaki; Masashi Toyoda; Yohko U. Katagiri; Junichiro Fujimoto; Jun-ichi Hata; Akihiro Umezawa; Nobutaka Kiyokawa

Background The Dickkopf (DKK) family comprises a set of proteins that function as regulators of Wnt/β–catenin signaling and has a crucial role in development. Recent studies have revealed the involvement of this family in tumorigenesis, however their role in tumorigenesis is still remained unclear. Methodology/Principal Findings We found increased expression of DKK2 but decreased expression of DKK1 in Ewing family tumor (EFT) cells. We showed that EFT-specific EWS/ETS fusion proteins enhance the DKK2 promoter activity, but not DKK1 promoter activity, via ets binding sites (EBSs) in the 5′ upstream region. EWS/ETS-mediated transactivation of the promoter was suppressed by the deletion and mutation of EBSs located upstream of the DKK2 gene. Interestingly, the inducible expression of EWS/ETS resulted in the strong induction of DKK2 expression and inhibition of DKK1 expression in human primary mesenchymal progenitor cells that are thought to be a candidate of cell origin of EFT. In addition, using an EFT cell line SK-ES1 cells, we also demonstrated that the expression of DKK1 and DKK2 is mutually exclusive, and the ectopic expression of DKK1, but not DKK2, resulted in the suppression of tumor growth in immuno-deficient mice. Conclusions/Significance Our results suggested that DKK2 could not functionally substitute for DKK1 tumor-suppressive effect in EFT. Given the mutually exclusive expression of DKK1 and DKK2, EWS/ETS regulates the transcription of the DKK family, and the EWS/ETS-mediated DKK2 up-regulation could affect the tumorigenicity of EFT in an indirect manner.


Immunology | 2008

B‐cell‐activating factor inhibits CD20‐mediated and B‐cell receptor‐mediated apoptosis in human B cells

Yohei Saito; Yoshitaka Miyagawa; Keiko Onda; Hideki Nakajima; Ban Sato; Yasuomi Horiuchi; Hajime Okita; Yohko U. Katagiri; Masahiro Saito; Toshiaki Shimizu; Junichiro Fujimoto; Nobutaka Kiyokawa

B‐cell‐activating factor (BAFF) is a survival and maturation factor for B cells belonging to the tumour necrosis factor superfamily. Among three identified functional receptors, the BAFF receptor (BAFF‐R) is thought to be responsible for the effect of BAFF on B cells though details of how remain unclear. We determined that a hairy‐cell leukaemia line, MLMA, expressed a relatively high level of BAFF‐R and was susceptible to apoptosis mediated by either CD20 or B‐cell antigen receptor (BCR). Using MLMA cells as an in vitro model of mature B cells, we found that treatment with BAFF could inhibit apoptosis mediated by both CD20 and BCR. We also observed, using immunoblot analysis and microarray analysis, that BAFF treatment induced activation of nuclear factor‐κB2 following elevation of the expression level of Bcl‐2, which may be involved in the molecular mechanism of BAFF‐mediated inhibition of apoptosis. Interestingly, BAFF treatment was also found to induce the expression of a series of genes, such as that for CD40, related to cell survival, suggesting the involvement of a multiple mechanism in the BAFF‐mediated anti‐apoptotic effect. MLMA cells should provide a model for investigating the molecular basis of the effect of BAFF on B cells in vitro and will help to elucidate how B cells survive in the immune system in which BAFF‐mediated signalling is involved.


PLOS ONE | 2012

Derivation of Human Differential Photoreceptor-like Cells from the Iris by Defined Combinations of CRX, RX and NEUROD

Yuko Seko; Noriyuki Azuma; Makoto Kaneda; Kei Nakatani; Yoshitaka Miyagawa; Yuuki Noshiro; Reiko Kurokawa; Hideyuki Okano; Akihiro Umezawa

Examples of direct differentiation by defined transcription factors have been provided for beta-cells, cardiomyocytes and neurons. In the human visual system, there are four kinds of photoreceptors in the retina. Neural retina and iris-pigmented epithelium (IPE) share a common developmental origin, leading us to test whether human iris cells could differentiate to retinal neurons. We here define the transcription factor combinations that can determine human photoreceptor cell fate. Expression of rhodopsin, blue opsin and green/red opsin in induced photoreceptor cells were dependent on combinations of transcription factors: A combination of CRX and NEUROD induced rhodopsin and blue opsin, but did not induce green opsin; a combination of CRX and RX induced blue opsin and green/red opsin, but did not induce rhodopsin. Phototransduction-related genes as well as opsin genes were up-regulated in those cells. Functional analysis; i.e. patch clamp recordings, clearly revealed that generated photoreceptor cells, induced by CRX, RX and NEUROD, responded to light. The response was an inward current instead of the typical outward current. These data suggest that photosensitive photoreceptor cells can be generated by combinations of transcription factors. The combination of CRX and RX generate immature photoreceptors: and additional NEUROD promotes maturation. These findings contribute substantially to a major advance toward eventual cell-based therapy for retinal degenerative diseases.

Collaboration


Dive into the Yoshitaka Miyagawa's collaboration.

Top Co-Authors

Avatar

Nobutaka Kiyokawa

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hidenori Akutsu

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge