Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshiteru Miyauchi is active.

Publication


Featured researches published by Yoshiteru Miyauchi.


Journal of Experimental Medicine | 2010

The Blimp1–Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis

Yoshiteru Miyauchi; Ken Ninomiya; Hiroya Miyamoto; Akemi Sakamoto; Ryotaro Iwasaki; Hiroko Hoshi; Kana Miyamoto; Wu Hao; Shigeyuki Yoshida; Hideo Morioka; Kazuhiro Chiba; Shigeaki Kato; Takeshi Tokuhisa; Mitinori Saitou; Yoshiaki Toyama; Toshio Suda; Takeshi Miyamoto

Controlling osteoclastogenesis is critical to maintain physiological bone homeostasis and prevent skeletal disorders. Although signaling activating nuclear factor of activated T cells 1 (NFATc1), a transcription factor essential for osteoclastogenesis, has been intensively investigated, factors antagonistic to NFATc1 in osteoclasts have not been characterized. Here, we describe a novel pathway that maintains bone homeostasis via two transcriptional repressors, B cell lymphoma 6 (Bcl6) and B lymphocyte–induced maturation protein-1 (Blimp1). We show that Bcl6 directly targets ‘osteoclastic’ molecules such as NFATc1, cathepsin K, and dendritic cell-specific transmembrane protein (DC-STAMP), all of which are targets of NFATc1. Bcl6-overexpression inhibited osteoclastogenesis in vitro, whereas Bcl6-deficient mice showed accelerated osteoclast differentiation and severe osteoporosis. We report that Bcl6 is a direct target of Blimp1 and that mice lacking Blimp1 in osteoclasts exhibit osteopetrosis caused by impaired osteoclastogenesis resulting from Bcl6 up-regulation. Indeed, mice doubly mutant in Blimp1 and Bcl6 in osteoclasts exhibited decreased bone mass with increased osteoclastogenesis relative to osteoclast-specific Blimp1-deficient mice. These results reveal a Blimp1–Bcl6–osteoclastic molecule axis, which critically regulates bone homeostasis by controlling osteoclastogenesis and may provide a molecular basis for novel therapeutic strategies.


Journal of Experimental Medicine | 2011

Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization

Kana Miyamoto; Shigeyuki Yoshida; Miyuri Kawasumi; Kazuaki Hashimoto; Tokuhiro Kimura; Yuiko Sato; Tami Kobayashi; Yoshiteru Miyauchi; Hiroko Hoshi; Ryotaro Iwasaki; Hiroya Miyamoto; Wu Hao; Hideo Morioka; Kazuhiro Chiba; Takashi Kobayashi; Hisataka Yasuda; Josef M. Penninger; Yoshiaki Toyama; Toshio Suda; Takeshi Miyamoto

The mobilization of hematopoietic stem cells does not require osteoclasts, which may even have an inhibitory effect.


Journal of Bone and Mineral Research | 2012

Osteoclast stimulatory transmembrane protein and dendritic cell–specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells

Hiroya Miyamoto; Takayuki Suzuki; Yoshiteru Miyauchi; Ryotaro Iwasaki; Tami Kobayashi; Yuiko Sato; Kana Miyamoto; Hiroko Hoshi; Kazuaki Hashimoto; Shigeyuki Yoshida; Wu Hao; Tomoaki Mori; Hiroya Kanagawa; Eri Katsuyama; Atsuhiro Fujie; Hideo Morioka; Morio Matsumoto; Kazuhiro Chiba; Motohiro Takeya; Yoshiaki Toyama; Takeshi Miyamoto

Cell–cell fusion is a dynamic phenomenon promoting cytoskeletal reorganization and phenotypic changes. To characterize factors essential for fusion of macrophage lineage cells, we identified the multitransmembrane protein, osteoclast stimulatory transmembrane protein (OC‐STAMP), and analyzed its function. OC‐STAMP–deficient mice exhibited a complete lack of cell–cell fusion of osteoclasts and foreign body giant cells (FBGCs), both of which are macrophage‐lineage multinuclear cells, although expression of dendritic cell specific transmembrane protein (DC‐STAMP), which is also essential for osteoclast/FBGC fusion, was normal. Crossing OC‐STAMP–overexpressing transgenic mice with OC‐STAMP–deficient mice restored inhibited osteoclast and FBGC cell–cell fusion seen in OC‐STAMP–deficient mice. Thus, fusogenic mechanisms in macrophage‐lineage cells are regulated via OC‐STAMP and DC‐STAMP.


EMBO Reports | 2011

The IRE1α-XBP1 pathway is essential for osteoblast differentiation through promoting transcription of Osterix.

Takahide Tohmonda; Yoshiteru Miyauchi; Rajarshi Ghosh; Masaki Yoda; Shinichi Uchikawa; Jiro Takito; Hideo Morioka; Masaya Nakamura; Takao Iwawaki; Kazuhiro Chiba; Yoshiaki Toyama; Fumihiko Urano; Keisuke Horiuchi

During skeletal development, osteoblasts produce large amounts of extracellular matrix proteins and must therefore increase their secretory machinery to handle the deposition. The accumulation of unfolded protein in the endoplasmic reticulum induces an adoptive mechanism called the unfolded protein response (UPR). We show that one of the most crucial UPR mediators, inositol‐requiring protein 1α (IRE1α), and its target transcription factor X‐box binding protein 1 (XBP1), are essential for bone morphogenic protein 2‐induced osteoblast differentiation. Furthermore, we identify Osterix (Osx, a transcription factor that is indispensible for bone formation) as a target gene of XBP1. The promoter region of the Osx gene encodes two potential binding motifs for XBP1, and we show that XBP1 binds to these regions. Thus, the IRE1α–XBP1 pathway is involved in osteoblast differentiation through promoting Osx transcription.


Biochemical and Biophysical Research Communications | 2009

MCP-1 expressed by osteoclasts stimulates osteoclastogenesis in an autocrine/paracrine manner

Kana Miyamoto; Ken Ninomiya; Koh-Hei Sonoda; Yoshiteru Miyauchi; Hiroko Hoshi; Ryotaro Iwasaki; Hiroya Miyamoto; Shigeyuki Yoshida; Yuiko Sato; Hideo Morioka; Kazuhiro Chiba; Kensuke Egashira; Toshio Suda; Yoshiaki Toyama; Takeshi Miyamoto

Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that plays a critical role in the recruitment and activation of leukocytes. Here, we describe that multinuclear osteoclast formation was significantly inhibited in cells derived from MCP-1-deficient mice. MCP-1 has been implicated in the regulation of osteoclast cell-cell fusion; however defects of multinuclear osteoclast formation in the cells from mice deficient in DC-STAMP, a seven transmembrane receptor essential for osteoclast cell-cell fusion, was not rescued by recombinant MCP-1. The lack of MCP-1 in osteoclasts resulted in a down-regulation of DC-STAMP, NFATc1, and cathepsin K, all of which were highly expressed in normal osteoclasts, suggesting that osteoclast differentiation was inhibited in MCP-1-deficient cells. MCP-1 alone did not induce osteoclastogenesis, however, the inhibition of osteoclastogenesis in MCP-1-deficient cells was restored by addition of recombinant MCP-1, indicating that osteoclastogenesis was regulated in an autocrine/paracrine manner by MCP-1 under the stimulation of RANKL in osteoclasts.


Proceedings of the National Academy of Sciences of the United States of America | 2013

HIF1α is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis

Yoshiteru Miyauchi; Yuiko Sato; Tami Kobayashi; Shigeyuki Yoshida; Tomoaki Mori; Hiroya Kanagawa; Eri Katsuyama; Atsuhiro Fujie; Wu Hao; Kana Miyamoto; Toshimi Tando; Hideo Morioka; Morio Matsumoto; Pierre Chambon; Randall S. Johnson; Shigeaki Kato; Yoshiaki Toyama; Takeshi Miyamoto

Significance Estrogen deficiency after menopause frequently accelerates osteoclastic bone resorption, leading to osteoporosis, the most common skeletal disorder in women. However, mechanisms underlying osteoporosis resulting from estrogen deficiency remain largely unknown. We report a unique mechanism underlying postmenopausal osteoporosis, and a therapeutic target, hypoxia-inducible factor 1 alpha (HIF1α), to treat this condition. HIF1α is unstable in the presence of oxygen, but is stabilized under hypoxic conditions. However, we found that HIF1α is destabilized by estrogen even under hypoxic conditions. Following estrogen deficiency due to menopause, HIF1α is stabilized in osteoclasts, leading to osteoclast activation. Oral administration of a HIF1α inhibitor protected postmenopausal osteoporosis model mice from osteoclast activation and bone loss. Thus, HIF1α represents a promising therapeutic target in osteoporosis. In women, estrogen deficiency after menopause frequently accelerates osteoclastic bone resorption, leading to osteoporosis, the most common skeletal disorder. However, mechanisms underlying osteoporosis resulting from estrogen deficiency remain largely unknown. Here we show that in bone-resorbing osteoclasts, estrogen-dependent destabilization of hypoxia-inducible factor 1 alpha (HIF1α), which is unstable in the presence of oxygen, plays a pivotal role in promoting bone loss in estrogen-deficient conditions. In vitro, HIF1α was destabilized by estrogen treatment even in hypoxic conditions, and estrogen loss in ovariectomized (Ovx) mice stabilized HIF1α in osteoclasts and promoted their activation and subsequent bone loss in vivo. Osteoclast-specific HIF1α inactivation antagonized bone loss in Ovx mice and osteoclast-specific estrogen receptor alpha deficient mice, both models of estrogen-deficient osteoporosis. Oral administration of a HIF1α inhibitor protected Ovx mice from osteoclast activation and bone loss. Thus, HIF1α represents a promising therapeutic target in osteoporosis.


Journal of Bone and Mineral Metabolism | 2009

1-Alpha, 25-dihydroxy vitamin D3 inhibits osteoclastogenesis through IFN-beta-dependent NFATc1 suppression

Sadaoki Sakai; Hironari Takaishi; Kenichiro Matsuzaki; Hironori Kaneko; Mitsuru Furukawa; Yoshiteru Miyauchi; Ayako Shiraishi; Keiji Saito; Akio Tanaka; Tadatsugu Taniguchi; Toshio Suda; Takeshi Miyamoto; Yoshiaki Toyama

Abstract1-Alpha, 25-dihydroxy vitamin D3 (1α,25(OH)2D3), an active form of vitamin D3, plays a critical role in calcium and bone metabolism. Although 1α,25(OH)2D3 has been used for osteoporosis therapy, the direct role of 1α,25(OH)2D3 on human osteoclastogenesis has not been well characterized. Here we show that 1α,25(OH)2D3 treatment significantly inhibited human osteoclast formation at the early stage of differentiation in a concentration-dependent manner. 1α,25(OH)2D3 inhibited the expression of nuclear factor of activated T cells c1 (NFATc1, also referred as NFAT2), an essential transcription factor for osteoclast differentiation, and upregulated the expression of interferon-β (IFN-β), a strong inhibitor of osteoclastogenesis in osteoclast progenitors. Inhibitory effects of 1α,25(OH)2D3 on osteoclastogenesis and NFATc1 expression were restored by treatment with an antibody against IFN-β, suggesting that upregulation of IFN-β by 1α,25(OH)2D3 treatment results in inhibition of NFATc1 expression, in turn interfering with osteoclast formation. Thus, our study may provide a molecular basis for the treatment of human bone diseases by 1α,25(OH)2D3 through regulation of the IFN-β and NFATc1 axis.


Journal of Biological Chemistry | 2005

Importin 4 is responsible for ligand-independent nuclear translocation of vitamin D receptor.

Yoshiteru Miyauchi; Toshimi Michigami; Naoko Sakaguchi; Toshihiro Sekimoto; Yoshihiro Yoneda; John Wesley Pike; Masayo Yamagata; Keiichi Ozono

Vitamin D receptor (VDR) is localized in nuclei and acts as a ligand-dependent transcription factor. To clarify the molecular mechanisms underlying the nuclear translocation of VDR, we utilized an in vitro nuclear transport assay using digitonin-permeabilized semi-intact cells. In this assay, recombinant whole VDR-(4-427) and a truncated mutant VDR-(4-232) lacking the carboxyl terminus of VDR were imported to nuclei even in the absence of ligand. In contrast, VDR-(91-427) lacking the amino-terminal DNA-binding domain was not imported to nuclei in the absence of ligand, and was efficiently imported in its liganded form. These results suggested that there are two distinct mechanisms underlying the nuclear transport of VDR; ligand-dependent and -independent pathways, and that the different regions of VDR are responsible for these processes. Therefore, we performed the yeast two-hybrid screening using VDR-(4-232) as the bait to explore the molecules responsible for ligand-independent nuclear translocation of VDR, and have identified importin 4 as an interacting protein. In the reconstruction experiments where transport factors were applied as recombinant proteins, recombinant importin 4 facilitated nuclear translocation of VDR regardless of its ligand, whereas importin β failed in transporting VDR even in the presence of ligand. In conclusion, importin 4, not importin β, is responsible for the ligand-independent nuclear translocation of VDR.


Journal of Immunology | 2007

Cell Surface Colony-Stimulating Factor 1 Can Be Cleaved by TNF-α Converting Enzyme or Endocytosed in a Clathrin-Dependent Manner

Keisuke Horiuchi; Takeshi Miyamoto; Hironari Takaishi; Akihiro Hakozaki; Naoto Kosaki; Yoshiteru Miyauchi; Mitsuru Furukawa; Jiro Takito; Hironori Kaneko; Kenichiro Matsuzaki; Hideo Morioka; Carl P. Blobel; Yoshiaki Toyama

CSF-1 is a hemopoietic growth factor, which plays an essential role in macrophage and osteoclast development. Alternative splice variants of CSF-1 are synthesized as soluble or membrane-anchored molecules, although membrane CSF-1 (mCSF-1) can be cleaved from the cell membrane to become soluble CSF-1. The activities involved in this proteolytic processing, also referred to as ectodomain shedding, remain poorly characterized. In the present study, we examined the properties of the mCSF-1 sheddase in cell-based assays. Shedding of mCSF-1 was up-regulated by phorbol ester treatment and was inhibited by the metalloprotease inhibitors GM6001 and tissue inhibitor of metalloproteases 3. Moreover, the stimulated shedding of mCSF-1 was abrogated in fibroblasts lacking the TNF-α converting enzyme (TACE, also known as a disintegrin and metalloprotease 17) and was rescued by expression of wild-type TACE in these cells, strongly suggesting that the stimulated shedding is TACE dependent. Additionally, we observed that mCSF-1 is predominantly localized to intracellular membrane compartments and is efficiently internalized in a clathrin-dependent manner. These results indicate that the local availability of mCSF-1 is actively regulated by ectodomain shedding and endocytosis. This mechanism may have important implications for the development and survival of monocyte lineage cells.


Journal of Bone and Mineral Research | 2012

Aldehyde-stress resulting from Aldh2 mutation promotes osteoporosis due to impaired osteoblastogenesis

Hiroko Hoshi; Wu Hao; Yoshinari Fujita; Atsushi Funayama; Yoshiteru Miyauchi; Kazuaki Hashimoto; Kana Miyamoto; Ryotaro Iwasaki; Yuiko Sato; Tami Kobayashi; Hiroya Miyamoto; Shigeyuki Yoshida; Tomoaki Mori; Hiroya Kanagawa; Eri Katsuyama; Atsuhiro Fujie; Kyoko Kitagawa; Keiichi I. Nakayama; Toshihiro Kawamoto; Motoaki Sano; Keiichi Fukuda; Ikuroh Ohsawa; Shigeo Ohta; Hideo Morioka; Morio Matsumoto; Kazuhiro Chiba; Yoshiaki Toyama; Takeshi Miyamoto

Osteoporosis is a complex disease with various causes, such as estrogen loss, genetics, and aging. Here we show that a dominant‐negative form of aldehyde dehydrogenase 2 (ALDH2) protein, ALDH2*2, which is produced by a single nucleotide polymorphism (rs671), promotes osteoporosis due to impaired osteoblastogenesis. Aldh2 plays a role in alcohol‐detoxification by acetaldehyde‐detoxification; however, transgenic mice expressing Aldh2*2 (Aldh2*2 Tg) exhibited severe osteoporosis with increased levels of blood acetaldehyde without alcohol consumption, indicating that Aldh2 regulates physiological bone homeostasis. Wild‐type osteoblast differentiation was severely inhibited by exogenous acetaldehyde, and osteoblastic markers such as osteocalcin, runx2, and osterix expression, or phosphorylation of Smad1,5,8 induced by bone morphogenetic protein 2 (BMP2) was strongly altered by acetaldehyde. Acetaldehyde treatment also inhibits proliferation and induces apoptosis in osteoblasts. The Aldh2*2 transgene or acetaldehyde treatment induced accumulation of the lipid‐oxidant 4‐hydroxy‐2‐nonenal (4HNE) and expression of peroxisome proliferator‐activated receptor gamma (PPARγ), a transcription factor that promotes adipogenesis and inhibits osteoblastogenesis. Antioxidant treatment inhibited acetaldehyde‐induced proliferation‐loss, apoptosis, and PPARγ expression and restored osteoblastogenesis inhibited by acetaldehyde. Treatment with a PPARγ inhibitor also restored acetaldehyde‐mediated osteoblastogenesis inhibition. These results provide new insight into regulation of osteoporosis in a subset of individuals with ALDH2*2 and in alcoholic patients and suggest a novel strategy to promote bone formation in such osteopenic diseases.

Collaboration


Dive into the Yoshiteru Miyauchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge