Yoshito Watanabe
National Institute of Radiological Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoshito Watanabe.
Scientific Reports | 2012
Jian Zheng; Keiko Tagami; Yoshito Watanabe; Shigeo Uchida; Tatsuo Aono; Nobuyoshi Ishii; Satoshi Yoshida; Yoshihisa Kubota; Shoichi Fuma; Sadao Ihara
The Fukushima Daiichi nuclear power plant (DNPP) accident caused massive releases of radioactivity into the environment. The released highly volatile fission products, such as 129mTe, 131I, 134Cs, 136Cs and 137Cs were found to be widely distributed in Fukushima and its adjacent prefectures in eastern Japan. However, the release of non-volatile actinides, in particular, Pu isotopes remains uncertain almost one year after the accident. Here we report the isotopic evidence for the release of Pu into the atmosphere and deposition on the ground in northwest and south of the Fukushima DNPP in the 20–30 km zones. The high activity ratio of 241Pu/239+240Pu (> 100) from the Fukushima DNPP accident highlights the need for long-term 241Pu dose assessment, and the ingrowth of 241Am. The results are important for the estimation of reactor damage and have significant implication in the strategy of decontamination.
Acta Obstetricia et Gynecologica Scandinavica | 2002
Hisao Osada; Yoshito Watanabe; Yoshikazu Nishimura; Masae Yukawa; Katsuyoshi Seki; Souei Sekiya
Background. During pregnancy, trace elements are indispensable for life maintenance not only for the mother but also for the fetus. The purpose of this study was to examine whether fetal growth is associated with altered levels of trace elements in maternal blood, fetal blood, and placenta tissue.
Environmental Science & Technology | 2014
Jian Zheng; Keiko Tagami; Wenting Bu; Shigeo Uchida; Yoshito Watanabe; Yoshihisa Kubota; Shoichi Fuma; Sadao Ihara
Since the Fukushima Daiichi nuclear power plant (FDNPP) accident in 2011, intensive studies of the distribution of released fission products, in particular (134)Cs and (137)Cs, in the environment have been conducted. However, the release sources, that is, the damaged reactors or the spent fuel pools, have not been identified, which resulted in great variation in the estimated amounts of (137)Cs released. Here, we investigated heavily contaminated environmental samples (litter, lichen, and soil) collected from Fukushima forests for the long-lived (135)Cs (half-life of 2 × 10(6) years), which is usually difficult to measure using decay-counting techniques. Using a newly developed triple-quadrupole inductively coupled plasma tandem mass spectrometry method, we analyzed the (135)Cs/(137)Cs isotopic ratio of the FDNPP-released radiocesium in environmental samples. We demonstrated that radiocesium was mainly released from the Unit 2 reactor. Considering the fact that the widely used tracer for the released Fukushima accident-sourced radiocesium in the environment, the (134)Cs/(137)Cs activity ratio, will become unavailable in the near future because of the short half-life of (134)Cs (2.06 years), the (135)Cs/(137)Cs isotopic ratio can be considered as a new tracer for source identification and long-term estimation of the mobility of released radiocesium in the environment.
Scientific Reports | 2015
Yoshito Watanabe; San’ei Ichikawa; Masahide Kubota; Junko Hoshino; Yoshihisa Kubota; Kouichi Maruyama; Shoichi Fuma; Isao Kawaguchi; Vasyl Yoschenko; Satoshi Yoshida
After the accident at the Fukushima Daiichi Nuclear Power Plant (F1NPP) in March 2011, much attention has been paid to the biological consequences of the released radionuclides into the surrounding area. We investigated the morphological changes in Japanese fir, a Japanese endemic native conifer, at locations near the F1NPP. Japanese fir populations near the F1NPP showed a significantly increased number of morphological defects, involving deletions of leader shoots of the main axis, compared to a control population far from the F1NPP. The frequency of the defects corresponded to the radioactive contamination levels of the observation sites. A significant increase in deletions of the leader shoots became apparent in those that elongated after the spring of 2012, a year after the accident. These results suggest possibility that the contamination by radionuclides contributed to the morphological defects in Japanese fir trees in the area near the F1NPP.
Journal of Environmental Radioactivity | 2015
Yoshihisa Kubota; Hiroyuki Takahashi; Yoshito Watanabe; Shoichi Fuma; Isao Kawaguchi; Masanari Aoki; Masahide Kubota; Yoshiaki Furuhata; Yusaku Shigemura; Fumio Yamada; Takahiro Ishikawa; Satoshi Obara; Satoshi Yoshida
The dose rates of radiation absorbed by wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident were estimated. The large Japanese field mouse (Apodemus speciosus), also called the wood mouse, was the major rodent species captured in the sampling area, although other species of rodents, such as small field mice (Apodemus argenteus) and Japanese grass voles (Microtus montebelli), were also collected. The external exposure of rodents calculated from the activity concentrations of radiocesium ((134)Cs and (137)Cs) in litter and soil samples using the ERICA (Environmental Risk from Ionizing Contaminants: Assessment and Management) tool under the assumption that radionuclides existed as the infinite plane isotropic source was almost the same as those measured directly with glass dosimeters embedded in rodent abdomens. Our findings suggest that the ERICA tool is useful for estimating external dose rates to small animals inhabiting forest floors; however, the estimated dose rates showed large standard deviations. This could be an indication of the inhomogeneous distribution of radionuclides in the sampled litter and soil. There was a 50-fold difference between minimum and maximum whole-body activity concentrations measured in rodents at the time of capture. The radionuclides retained in rodents after capture decreased exponentially over time. Regression equations indicated that the biological half-life of radiocesium after capture was 3.31 d. At the time of capture, the lowest activity concentration was measured in the lung and was approximately half of the highest concentration measured in the mixture of muscle and bone. The average internal absorbed dose rate was markedly smaller than the average external dose rate (<10% of the total absorbed dose rate). The average total absorbed dose rate to wild rodents inhabiting the sampling area was estimated to be approximately 52 μGy h(-1) (1.2 mGy d(-1)), even 3 years after the accident. This dose rate exceeds 0.1-1 mGy d(-1) derived consideration reference level for Reference rat proposed by the International Commission on Radiological Protection (ICRP).
Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 2003
Shino Homma-Takeda; Yoshikazu Nishimura; Yoshito Watanabe; Hitoshi Imaseki; Masae Yukawa
Abstract The epididymis, a male reproductive organ, which is a highly convoluted duct, plays an important role in transportation of spermatozoa, their maturation, and their storage. Although major elements, such as P, S and K, as well as trace elements, such as Mn, Cu, Zn, Se, are known to be essential for spermatogenesis, detailed distributions of the elements in the epididymis are only poorly understood. In the present study, Mn, Cu, Zn and Se levels in the epididymis were examined in male Wistar rats by inductively coupled argon plasma-mass spectrometry (ICP-MS) analysis and in situ multi-elemental distributions of epididymal sections were determined by micro-PIXE (particle induced X-ray emission) analysis. The Zn, Cu and Se concentrations in the epididymis of the young adult rats were around 30 μg/g wet weight, 2 μg/g wet weight and 1 μg/g wet weight, respectively, and their Mn were less than 0.5 μg/g wet weight. PIXE imaging of P and K exhibited that P and K were higher in the epididymal epithelium. In contrast, more S was detected in the lumen, which is composed of spermatozoa and a fluid. Elemental imagings of the trace elements were unclear compared with the major elements, but information about zinc localization in the epididymis was obtained.
Environmental Science & Technology | 2015
Yoshihisa Kubota; Hideo Tsuji; Taiki Kawagoshi; Naoko Shiomi; Hiroyuki Takahashi; Yoshito Watanabe; Shoichi Fuma; Kazutaka Doi; Isao Kawaguchi; Masanari Aoki; Masahide Kubota; Yoshiaki Furuhata; Yusaku Shigemura; Masahiko Mizoguchi; Fumio Yamada; Morihiko Tomozawa; Shinsuke H. Sakamoto; Satoshi Yoshida
Following the Fukushima Dai-ichi Nuclear Power Plant accident, radiation effects on nonhuman biota in the contaminated areas have been a great concern. The induction of chromosomal aberrations in splenic lymphocytes of small Japanese field mice (Apodemus argenteus) and house mice (Mus musculus) inhabiting Fukushima Prefecture was investigated. In mice inhabiting the slightly contaminated area, the average frequency of dicentric chromosomes was similar to that seen in mice inhabiting a noncontaminated control area. In contrast, mice inhabiting the moderately and heavily contaminated areas showed a significant increase in the average frequencies of dicentric chromosomes. Total absorbed dose rate was estimated to be approximately 1 mGy d(-1) and 3 mGy d(-1) in the moderately and heavily contaminated areas, respectively. Chromosomal aberrations tended to roughly increase with dose rate. Although theoretically, the frequency of chromosomal aberrations was considered proportional to the absorbed dose, chromosomal aberrations in old mice (estimated median age 300 days) did not increase with radiation dose at the same rate as that observed in young mice (estimated median age 105 days).
Health Physics | 2013
Nobuyoshi Ishii; Keiko Tagami; Hyoe Takata; Kazuhiro Fujita; Isao Kawaguchi; Yoshito Watanabe; Shigeo Uchida
AbstractRadioactivity from the Fukushima Daiichi Nuclear Power Plant (F-1NPP) accident in deposition samples has been monitored at the National Institute of Radiological Sciences (NIRS) in Chiba Prefecture, Japan, located about 220 km south-southwest of the F-1NPP. Sampling was carried out from 15 March 2011, two to three times a day for 10 d and then once a day until 22 April 2011. Gamma-ray spectrometry of fallout deposition samples revealed the presence of 131I, 132I, 132Te, 134Cs, and 137Cs. The largest deposition was observed during 7:00–16:00 on 21 March. The estimated total deposition densities at NIRS were 1.40 × 105 Bq m−2 for 131I, 4.12 × 104 Bq m−2 for 132Te, 1.45 × 104 Bq m−2 for 134Cs, and 1.48 × 104 Bq m−2 for 137Cs (corrected to 11 March 2011). The obtained densities of 134Cs and 137Cs were also supported by the accumulated amount of 134Cs and 137Cs in soil near the deposition sampling site. For the vertical profile of those radionuclides in soil at NIRS, about 94% of the total deposition was distributed in the top 10 mm depth on 26 April 2011.
Journal of Environmental Radioactivity | 2015
Shoichi Fuma; Sadao Ihara; Isao Kawaguchi; Takahiro Ishikawa; Yoshito Watanabe; Yoshihisa Kubota; Youji Sato; Hiroyuki Takahashi; Tatsuo Aono; Nobuyoshi Ishii; Haruhi Soeda; Kumi Matsui; Yumi Une; Yukio Minamiya; Satoshi Yoshida
The radiological risks to the Tohoku hynobiid salamanders (class Amphibia), Hynobius lichenatus due to the Fukushima Dai-ichi Nuclear Power Plant accident were assessed in Fukushima Prefecture, including evacuation areas. Aquatic egg clutches (n = 1 for each sampling date and site; n = 4 in total), overwintering larvae (n = 1-5 for each sampling date and site; n = 17 in total), and terrestrial juveniles or adults (n = 1 or 3 for each sampling date and site; n = 12 in total) of H. lichenatus were collected from the end of April 2011 to April 2013. Environmental media such as litter (n = 1-5 for each sampling date and site; n = 30 in total), soil (n = 1-8 for each sampling date and site; n = 31 in total), water (n = 1 for each sampling date and site; n = 17 in total), and sediment (n = 1 for each sampling date and site; n = 17 in total) were also collected. Activity concentrations of (134)Cs + (137)Cs were 1.9-2800, 0.13-320, and 0.51-220 kBq (dry kg) (-1) in the litter, soil, and sediment samples, respectively, and were 0.31-220 and <0.29-40 kBq (wet kg)(-1) in the adult and larval salamanders, respectively. External and internal absorbed dose rates to H. lichenatus were calculated from these activity concentration data, using the ERICA Assessment Tool methodology. External dose rates were also measured in situ with glass dosimeters. There was agreement within a factor of 2 between the calculated and measured external dose rates. In the most severely contaminated habitat of this salamander, a northern part of Abukuma Mountains, the highest total dose rates were estimated to be 50 and 15 μGy h(-1) for the adults and overwintering larvae, respectively. Growth and survival of H. lichenatus was not affected at a dose rate of up to 490 μGy h(-1) in the previous laboratory chronic gamma-irradiation experiment, and thus growth and survival of this salamander would not be affected, even in the most severely contaminated habitat in Fukushima Prefecture. However, further studies of the adult salamanders may be required in order to examine whether the most severe radioactive contamination has any effects on sensitive endpoints, since the estimated highest dose rate to the adults exceeded some of the guidance dose rates proposed by various organisations and programmes for the protection of amphibians, which range from 4 to 400 μGy h(-1). Conversely, at one site in Nakadori, a moderately contaminated region in Fukushima Prefecture, the dose rate to the adult salamanders in spring of 2012 was estimated to be 0.2 μGy h(-1). Estimated dose rates to the overwintering larvae in spring of 2012 were 1 and 0.2 μGy h(-1) at one site in Nakadori, and in Aizu, a less contaminated region in Fukushima Prefecture, respectively. These results suggest that there is a low risk that H. lichenatus will be affected by radioactive contamination in these districts, though further studies on dose rate estimation are required for definitive risk characterisation.
Journal of Environmental Radioactivity | 2000
Tadaaki Ban-Nai; Yasuyuki Muramatsu; Keiko Tagami; Shigeo Uchida; Satoshi Yoshida; Shinzo Kimura; Yoshito Watanabe
Abstract Concentrations of artificial radionuclides in plant samples collected in the surrounding areas of the uranium conversion facility of JCO Company Limited were studied following the criticality accident in Tokai-mura. Radionuclides detected in plants were 131 I , 133 I , 140 Ba - 140 La and 137 Cs . The highest concentrations of the nuclides were found in samples collected near the facility or its ventilation exhaust and the concentrations decreased sharply with distance. The origins of 140 Ba - 140 La and 137 Cs were thought to be from 140 Xe and 137 Xe , respectively, which were produced in the fission event and released to the atmosphere. The average 131 I / 133 I activity ratio was about 21 (decay-corrected to the end of fission). Levels of the radionuclides in plants outside the JCO grounds were markedly below the intervention levels for foodstuffs in Japan.