Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshiya Seto is active.

Publication


Featured researches published by Yoshiya Seto.


Genes to Cells | 2013

Structures of D14 and D14L in the strigolactone and karrikin signaling pathways

Megumi Kagiyama; Yoshinori Hirano; Tomoyuki Mori; Sun-Yong Kim; Junko Kyozuka; Yoshiya Seto; Shinjiro Yamaguchi; Toshio Hakoshima

Strigolactones (SLs) are plant hormones that inhibit shoot branching. DWARF14 (D14) inhibits rice tillering and is an SL receptor candidate in the branching inhibition pathway, whereas the close homologue DWARF14‐LIKE (D14L) participates in the signaling pathway of karrikins (KARs), which are derived from burnt vegetation as smoke stimulants of seed germination. We provide the first evidence for direct binding of the bioactive SL analogue GR24 to D14. Isothermal titration calorimetry measurements show a D14–GR24 binding affinity in the sub‐micromolar range. Similarly, bioactive KAR1 directly binds D14L in the micromolar range. The crystal structure of rice D14 shows a compact α‐/β‐fold hydrolase domain forming a deep ligand‐binding pocket capable of accommodating GR24. Insertion of four α‐helices between β6 strand and αD helix forms the helical cap of the pocket, although the pocket is open to the solvent. The pocket contains the conserved catalytic triad Ser‐His‐Asp aligned with the oxyanion hole, suggesting hydrolase activity. Although these structural characteristics are conserved in D14L, the D14L pocket is smaller than that of D14. The KAR‐insensitive mutation kai2‐1 is located at the prominent long β6‐αD1 loop, which is characteristic in D14 and D14L, but not in related α‐/β‐fold hydrolases.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Carlactone is an endogenous biosynthetic precursor for strigolactones

Yoshiya Seto; Aika Sado; Kei Asami; Atsushi Hanada; Mikihisa Umehara; Kohki Akiyama; Shinjiro Yamaguchi

Significance Strigolactones (SLs) were initially characterized as root-derived signals for parasitic and symbiotic interactions with root parasitic plants and arbuscular mycorrhizal fungi, respectively. SLs were later shown to act as endogenous hormones that regulate shoot branching. Carlactone (CL) was identified as a product of three SL biosynthetic enzymes in vitro, and therefore a putative biosynthetic precursor for SLs. However, it was neither detected from plant tissues, nor was the conversion of CL to SL demonstrated in vivo. In this paper, we show that 13C-labeled CL is converted to SLs in vivo, and that endogenous CL is successfully identified from rice and Arabidopsis. These results demonstrate that CL is a true biosynthetic precursor for SLs. Strigolactones (SLs) are a class of terpenoid plant hormones that regulate shoot branching as well as being known as root-derived signals for symbiosis and parasitism. SL has tricyclic-lactone (ABC-ring) and methyl butenolide (D-ring), and they are connected through an enol ether bridge. Recently, a putative biosynthetic intermediate called carlactone (CL), of which carbon skeleton is in part similar to those of SLs, was identified by biochemical analysis of three biosynthetic enzymes, DWARF27, CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), and CCD8 in vitro. However, CL has never been identified from plant tissues, and the conversion of CL to SLs has not been proven in vivo. To address these questions, we chemically synthesized 13C-labeled CL. We show that 13C-labeled CL is converted to (−)-[13C]-2′-epi-5-deoxystrigol ((−)-2′-epi-5DS) and [13C]-orobanchol, endogenous SLs in rice, in the dwarf10 mutant, which is defective in CCD8. In addition, we successfully identified endogenous CL by using liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry in rice and Arabidopsis. Furthermore, we determined the absolute stereochemistry of endogenous CL to be (11R)-configuration, which is the same as that of (−)-2′-epi-5DS at the corresponding position. Feeding experiments showed that only the (11R)-isomer of CL, but not the (11S)-isomer, was converted to (−)-2′-epi-5DS in vivo. Taken together, our data provide conclusive evidence that CL is an endogenous SL precursor that is stereospecifically recognized in the biosynthesis pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro.

Satoko Abe; Aika Sado; Kai Tanaka; Takaya Kisugi; Kei Asami; Saeko Ota; Hyun Il Kim; Kaori Yoneyama; Xiaonan Xie; Toshiyuki Ohnishi; Yoshiya Seto; Shinjiro Yamaguchi; Kohki Akiyama; Koichi Yoneyama; Takahito Nomura

Significance Strigolactones (SLs) are plant hormones that inhibit shoot branching and are parasitic and symbiotic signals toward root parasitic plants and arbuscular mycorrhizal fungi, respectively. Therefore, the manipulation of SL levels potentially improves the yield of crops. To achieve this goal, the biosynthesis pathway of SLs must be fully understood. SLs are biosynthesized from a precursor, named carlactone (CL), which is derived from carotenoid. However, no downstream pathway of CL has been elucidated. In this study, we show that CL is converted into a carboxylated metabolite, named carlactonoic acid, by Arabidopsis MAX1, the enzymatic function of which had been unknown, and that its methyl ester has the ability to interact with a SL receptor and suppress shoot branching in Arabidopsis. Strigolactones (SLs) stimulate seed germination of root parasitic plants and induce hyphal branching of arbuscular mycorrhizal fungi in the rhizosphere. In addition, they have been classified as a new group of plant hormones essential for shoot branching inhibition. It has been demonstrated thus far that SLs are derived from carotenoid via a biosynthetic precursor carlactone (CL), which is produced by sequential reactions of DWARF27 (D27) enzyme and two carotenoid cleavage dioxygenases CCD7 and CCD8. We previously found an extreme accumulation of CL in the more axillary growth1 (max1) mutant of Arabidopsis, which exhibits increased lateral inflorescences due to SL deficiency, indicating that CL is a probable substrate for MAX1 (CYP711A1), a cytochrome P450 monooxygenase. To elucidate the enzymatic function of MAX1 in SL biosynthesis, we incubated CL with a recombinant MAX1 protein expressed in yeast microsomes. MAX1 catalyzed consecutive oxidations at C-19 of CL to convert the C-19 methyl group into carboxylic acid, 9-desmethyl-9-carboxy-CL [designated as carlactonoic acid (CLA)]. We also identified endogenous CLA and its methyl ester [methyl carlactonoate (MeCLA)] in Arabidopsis plants using LC-MS/MS. Although an exogenous application of either CLA or MeCLA suppressed the growth of lateral inflorescences of the max1 mutant, MeCLA, but not CLA, interacted with Arabidopsis thaliana DWARF14 (AtD14) protein, a putative SL receptor, as shown by differential scanning fluorimetry and hydrolysis activity tests. These results indicate that not only known SLs but also MeCLA are biologically active in inhibiting shoot branching in Arabidopsis.


Plant and Cell Physiology | 2012

Recent Advances in Strigolactone Research: Chemical and Biological Aspects

Yoshiya Seto; Hiromu Kameoka; Shinjiro Yamaguchi; Junko Kyozuka

Strigolactones (SLs) are a group of terpenoid lactones that were discovered in the 1960s. They were initially characterized as allelochemicals secreted from roots to the rhizosphere, and have functions in parasitic and symbiotic interactions with root parasitic plants and arbuscular mycorrhizal (AM) fungi, respectively. In 2008, SLs were shown to act as endogenous hormones that regulate shoot branching. The discovery of a hormonal function for SLs has provided a link between genetically studied shoot branching mutants and chemically characterized SLs in earlier studies. This has offered new strategies and experimental tools to address a number of intriguing questions as to the biological function and molecular action of SLs. In this review, we will provide an overview of recent topics on SLs, and highlight new discoveries regarding its biosynthetic pathway and multiple hormonal roles in plant development and adaptive responses.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Lateral branching oxidoreductase acts in the final stages of strigolactone biosynthesis in Arabidopsis

Philip B. Brewer; Kaori Yoneyama; Fiona Filardo; Emma Meyers; Adrian Scaffidi; Tancred Frickey; Kohki Akiyama; Yoshiya Seto; Elizabeth A. Dun; Julia E. Cremer; Stephanie C. Kerr; Mark T. Waters; Gavin R. Flematti; Michael G. Mason; Georg F. Weiller; Shinjiro Yamaguchi; Takahito Nomura; Steven M. Smith; Koichi Yoneyama; Christine A. Beveridge

Significance Strigolactone hormones regulate many plant growth and developmental processes and are particularly important in regulating growth in response to nonoptimal conditions. Plants produce a range of bioactive strigolactone-like compounds, suggesting that the biosynthesis pathway is complex. Despite this complexity, only one type of enzyme, the MORE AXILLARY GROWTH1 (MAX1) cytochrome P450, has been attributed to the diversity of strigolactones. Using transcriptomics and reverse genetics, we discovered a previously uncharacterized gene that encodes a 2-oxoglutarate and Fe(II)-dependent dioxygenase involved in strigolactone production downstream of MAX1. Studies with the corresponding mutant have shown that previously identified strigolactone-type compounds in Arabidopsis are not the major strigolactone-type shoot branching hormone in this model species. Strigolactones are a group of plant compounds of diverse but related chemical structures. They have similar bioactivity across a broad range of plant species, act to optimize plant growth and development, and promote soil microbe interactions. Carlactone, a common precursor to strigolactones, is produced by conserved enzymes found in a number of diverse species. Versions of the MORE AXILLARY GROWTH1 (MAX1) cytochrome P450 from rice and Arabidopsis thaliana make specific subsets of strigolactones from carlactone. However, the diversity of natural strigolactones suggests that additional enzymes are involved and remain to be discovered. Here, we use an innovative method that has revealed a missing enzyme involved in strigolactone metabolism. By using a transcriptomics approach involving a range of treatments that modify strigolactone biosynthesis gene expression coupled with reverse genetics, we identified LATERAL BRANCHING OXIDOREDUCTASE (LBO), a gene encoding an oxidoreductase-like enzyme of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. Arabidopsis lbo mutants exhibited increased shoot branching, but the lbo mutation did not enhance the max mutant phenotype. Grafting indicated that LBO is required for a graft-transmissible signal that, in turn, requires a product of MAX1. Mutant lbo backgrounds showed reduced responses to carlactone, the substrate of MAX1, and methyl carlactonoate (MeCLA), a product downstream of MAX1. Furthermore, lbo mutants contained increased amounts of these compounds, and the LBO protein specifically converts MeCLA to an unidentified strigolactone-like compound. Thus, LBO function may be important in the later steps of strigolactone biosynthesis to inhibit shoot branching in Arabidopsis and other seed plants.


Current Opinion in Plant Biology | 2014

Strigolactone biosynthesis and perception.

Yoshiya Seto; Shinjiro Yamaguchi

Strigolactones (SLs) are plant hormones that regulate shoot branching as well as known as root-derived signals for parasitic and symbiotic interactions. Since the first discovery of a naturally occurring SL, strigol, more than 40 years ago, the biosynthetic pathway has remained elusive. Recently, it was partially uncovered through the functional analysis of some biosynthetic components that were discovered from genetic studies using SL-deficient mutants. In addition, a perception component was also characterized through genetic and biochemical studies of a rice SL-insensitive mutant, dwarf14. In this review, we describe new findings on SL biosynthesis and focus on a recently identified SL precursor, carlactone. We also describe the perception mechanisms by an α/β-fold hydrolase family protein.


Plant Journal | 2015

Lack of cytosolic glutamine synthetase1;2 in vascular tissues of axillary buds causes severe reduction in their outgrowth and disorder of metabolic balance in rice seedlings.

Miwa Ohashi; Keiki Ishiyama; Miyako Kusano; Atsushi Fukushima; Soichi Kojima; Atsushi Hanada; Keiichi Kanno; Toshihiko Hayakawa; Yoshiya Seto; Junko Kyozuka; Shinjiro Yamaguchi; Tomoyuki Yamaya

The development and elongation of active tillers in rice was severely reduced by a lack of cytosolic glutamine synthetase1;2 (GS1;2), and, to a lesser extent, lack of NADH-glutamate synthase1 in knockout mutants. In situ hybridization using the basal part of wild-type seedlings clearly showed that expression of OsGS1;2 was detected in the phloem companion cells of the nodal vascular anastomoses and large vascular bundles of axillary buds. Accumulation of lignin, visualized using phloroglucin HCl, was also observed in these tissues. The lack of GS1;2 resulted in reduced accumulation of lignin. Re-introduction into the mutants of OsGS1;2 cDNA under the control of its own promoter successfully restored the outgrowth of tillers and lignin deposition to wild-type levels. Transcriptomic analysis using a 5 mm basal region of rice shoots showed that the GS1;2 mutants accumulated reduced amounts of mRNAs for carbon and nitrogen metabolism, including C1 unit transfer in lignin synthesis. Although a high content of strigolactone in rice roots is known to reduce active tiller number, the reduction of outgrowth of axillary buds observed in the GS1;2 mutants was independent of the level of strigolactone. Thus metabolic disorder caused by the lack of GS1;2 resulted in a severe reduction in the outgrowth of axillary buds and lignin deposition.


Frontiers in Plant Science | 2015

Apoplastic interactions between plants and plant root intruders

Kanako Mitsumasu; Yoshiya Seto; Satoko Yoshida

Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant–parasite interactions.


Science | 2018

Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding

Takeshi Kuroha; Keisuke Nagai; Rico Gamuyao; Diane R. Wang; Tomoyuki Furuta; Masanari Nakamori; Takuya Kitaoka; Keita Adachi; Anzu Minami; Yoshinao Mori; Kiyoshi Mashiguchi; Yoshiya Seto; Shinjiro Yamaguchi; Mikiko Kojima; Hitoshi Sakakibara; Jianzhong Wu; Kaworu Ebana; Nobutaka Mitsuda; Masaru Ohme-Takagi; Shuichi Yanagisawa; Masanori Yamasaki; Ryusuke Yokoyama; Kazuhiko Nishitani; Toshihiro Mochizuki; Gen Tamiya; Susan R. McCouch; Motoyuki Ashikari

How rice defeats the floodwaters Deepwater rice varieties grow taller when flooded, in a growth response driven by the plant hormones gibberellin and ethylene. This keeps the leaves above the water. Kuroha et al. identified the genes underlying this phenotype, which encode a component of the gibberellin biosynthetic pathway and its regulatory ethylene-responsive transcription factor. This genetic relay drives growth of the plant stem internodes in response to flooding. Modern cultivated deepwater rice, which has been domesticated for adaptation to the monsoon season of Bangladesh, emerged from the genetic variation found in wild rice strains over a broader geographic region. Science, this issue p. 181 Ethylene-inducible activation of gibberellin biosynthesis helps rice survive long periods of submersion in flooded plots. Most plants do poorly when flooded. Certain rice varieties, known as deepwater rice, survive periodic flooding and consequent oxygen deficiency by activating internode growth of stems to keep above the water. Here, we identify the gibberellin biosynthesis gene, SD1 (SEMIDWARF1), whose loss-of-function allele catapulted the rice Green Revolution, as being responsible for submergence-induced internode elongation. When submerged, plants carrying the deepwater rice–specific SD1 haplotype amplify a signaling relay in which the SD1 gene is transcriptionally activated by an ethylene-responsive transcription factor, OsEIL1a. The SD1 protein directs increased synthesis of gibberellins, largely GA4, which promote internode elongation. Evolutionary analysis shows that the deepwater rice–specific haplotype was derived from standing variation in wild rice and selected for deepwater rice cultivation in Bangladesh.


Plant and Cell Physiology | 2015

Structural Requirements of Strigolactones for Shoot Branching Inhibition in Rice and Arabidopsis

Mikihisa Umehara; Mengmeng Cao; Kohki Akiyama; Tomoki Akatsu; Yoshiya Seto; Atsushi Hanada; Weiqiang Li; Noriko Takeda-Kamiya; Yu Morimoto; Shinjiro Yamaguchi

Collaboration


Dive into the Yoshiya Seto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kohki Akiyama

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Scaffidi

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Gavin R. Flematti

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Mark T. Waters

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aika Sado

Osaka Prefecture University

View shared research outputs
Researchain Logo
Decentralizing Knowledge