Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshiyuki Ogata is active.

Publication


Featured researches published by Yoshiyuki Ogata.


Plant Journal | 2009

Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics.

Kaoru Urano; Kyonoshin Maruyama; Yoshiyuki Ogata; Yoshihiko Morishita; Migiwa Takeda; Nozomu Sakurai; Hideyuki Suzuki; Kazuki Saito; Daisuke Shibata; Masatomo Kobayashi; Kazuko Yamaguchi-Shinozaki; Kazuo Shinozaki

Drought is the major environmental threat to agricultural production and distribution worldwide. Adaptation by plants to dehydration stress is a complex biological process that involves global changes in gene expression and metabolite composition. Here, using one type of functional genomics analysis, metabolomics, we characterized the metabolic phenotypes of Arabidopsis wild-type and a knockout mutant of the NCED3 gene (nc3-2) under dehydration stress. NCED3 plays a role in the dehydration-inducible biosynthesis of abscisic acid (ABA), a phytohormone that is important in the dehydration-stress response in higher plants. Metabolite profiling performed using two types of mass spectrometry (MS) systems, gas chromatography/time-of-flight MS (GC/TOF-MS) and capillary electrophoresis MS (CE-MS), revealed that accumulation of amino acids depended on ABA production, but the level of the oligosaccharide raffinose was regulated by ABA independently under dehydration stress. Metabolic network analysis showed that global metabolite-metabolite correlations occurred in dehydration-increased amino acids in wild-type, and strong correlations with raffinose were reconstructed in nc3-2. An integrated metabolome and transcriptome analysis revealed ABA-dependent transcriptional regulation of the biosynthesis of the branched-chain amino acids, saccharopine, proline and polyamine. This metabolomics analysis revealed new molecular mechanisms of dynamic metabolic networks in response to dehydration stress.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Defects in IRE1 enhance cell death and fail to degrade mRNAs encoding secretory pathway proteins in the Arabidopsis unfolded protein response.

Kei-ichiro Mishiba; Yukihiro Nagashima; Eiji Suzuki; Noriko Hayashi; Yoshiyuki Ogata; Yukihisa Shimada; Nozomu Koizumi

The unfolded protein response (UPR) is a cellular response highly conserved in eukaryotes to obviate accumulation of misfolded proteins in the endoplasmic reticulum (ER). Inositol-requiring enzyme 1 (IRE1) catalyzes the cytoplasmic splicing of mRNA encoding bZIP transcription factors to activate the UPR signaling pathway. Arabidopsis IRE1 was recently shown to be involved in the cytoplasmic splicing of bZIP60 mRNA. In the present study, we demonstrated that an Arabidopsis mutant with defects in two IRE1 paralogs showed enhanced cell death upon ER stress compared with a mutant with defects in bZIP60 and wild type, suggesting an alternative function of IRE1 in the UPR. Analysis of our previous microarray data and subsequent quantitative PCR indicated degradation of mRNAs encoding secretory pathway proteins by tunicamycin, DTT, and heat in an IRE1-dependent manner. The degradation of mRNAs localized to the ER during the UPR was considered analogous to a molecular mechanism referred to as the regulated IRE1-dependent decay of mRNAs reported in metazoans. Another microarray analysis conducted in the condition repressing transcription with actinomycin D and a subsequent Gene Set Enrichment Analysis revealed the regulated IRE1-dependent decay of mRNAs-mediated degradation of a significant portion of mRNAs encoding the secretory pathway proteins. In the mutant with defects in IRE1, genes involved in the cytosolic protein response such as heat shock factor A2 were up-regulated by tunicamycin, indicating the connection between the UPR and the cytosolic protein response.


Bioinformatics | 2010

CoP: a database for characterizing co-expressed gene modules with biological information in plants

Yoshiyuki Ogata; Hideyuki Suzuki; Nozomu Sakurai; Daisuke Shibata

UNLABELLED Using a large dataset (10 022 assays) obtained from public plant microarray databases, we developed the CoP database for associating co-expressed gene modules with biological information such as gene ontology terms and, if available, metabolic pathway names. The Confeito algorithm developed previously in our laboratory, which is suitable to calculate the interconnectivity between genes in co-expressed gene network, was applied to extract co-expressed gene modules. The database includes the gene modules for Arabidopsis thaliana (thale cress) and seven crops, Glycine max (soybean), Hordeum vulgare (barley), Oryza sativa (rice), Populus trichocarpa (poplar), Triticum aestivum (wheat), Vitis vinifera (grape) and Zea mays (maize). AVAILABILITY The CoP database is available at: http://webs2.kazusa.or.jp/kagiana/cop0911/.


Molecular Plant-microbe Interactions | 2012

Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis.

Hirohisa Saga; Takumi Ogawa; Kosuke Kai; Hideyuki Suzuki; Yoshiyuki Ogata; Nozomu Sakurai; Daisuke Shibata; Daisaku Ohta

Camalexin is the major phytoalexin in Arabidopsis. An almost complete set of camalexin biosynthetic enzymes have been elucidated but only limited information is available regarding molecular mechanisms regulating camalexin biosynthesis. Here, we demonstrate that ANAC042, a member of the NAM, ATAF1/2, and CUC2 (NAC) transcription factor family genes, is involved in camalexin biosynthesis induction. T-DNA insertion mutants of ANAC042 failed to accumulate camalexin at the levels achieved in the wild type, and were highly susceptible to Alternaria brassicicola infection. The camalexin biosynthetic genes CYP71A12, CYP71A13, and CYP71B15/PAD3 were not fully induced in the mutants, indicating that the camalexin defects were at least partly a result of reduced expression levels of these P450 genes. β-Glucuronidase (GUS)-reporter assays demonstrated tissue-specific induction of ANAC042 in response to differential pathogen infections. Bacterial flagellin (Flg22) induced ANAC042 expression in the root-elongation zone, the camalexin biosynthetic site, and the induction was abolished in the presence of either a general kinase inhibitor (K252a), a Ca(2+)-chelator (BAPTA), or methyl jasmonate. The GUS-reporter assay revealed repression of the Flg22-dependent ANAC042 expression in the ethylene-insensitive ein2-1 background but not in sid2-2 plants defective for salicylic acid biosynthesis. We discuss ANAC042 as a key transcription factor involved in previously unknown regulatory mechanisms to induce phytoalexin biosynthesis in Arabidopsis.


Nucleic Acids Research | 2011

KaPPA-View4: a metabolic pathway database for representation and analysis of correlation networks of gene co-expression and metabolite co-accumulation and omics data

Nozomu Sakurai; Takeshi Ara; Yoshiyuki Ogata; Ryosuke Sano; Takashi Ohno; Kenjiro Sugiyama; Atsushi Hiruta; Kiyoshi Yamazaki; Kentaro Yano; Koh Aoki; Asaph Aharoni; Kazuki Hamada; Koji Yokoyama; Shingo Kawamura; Hirofumi Otsuka; Toshiaki Tokimatsu; Minoru Kanehisa; Hideyuki Suzuki; Kazuki Saito; Daisuke Shibata

Correlations of gene-to-gene co-expression and metabolite-to-metabolite co-accumulation calculated from large amounts of transcriptome and metabolome data are useful for uncovering unknown functions of genes, functional diversities of gene family members and regulatory mechanisms of metabolic pathway flows. Many databases and tools are available to interpret quantitative transcriptome and metabolome data, but there are only limited ones that connect correlation data to biological knowledge and can be utilized to find biological significance of it. We report here a new metabolic pathway database, KaPPA-View4 (http://kpv.kazusa.or.jp/kpv4/), which is able to overlay gene-to-gene and/or metabolite-to-metabolite relationships as curves on a metabolic pathway map, or on a combination of up to four maps. This representation would help to discover, for example, novel functions of a transcription factor that regulates genes on a metabolic pathway. Pathway maps of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and maps generated from their gene classifications are available at KaPPA-View4 KEGG version (http://kpv.kazusa.or.jp/kpv4-kegg/). At present, gene co-expression data from the databases ATTED-II, COXPRESdb, CoP and MiBASE for human, mouse, rat, Arabidopsis, rice, tomato and other plants are available.


DNA Research | 2010

Coexpression Analysis of Tomato Genes and Experimental Verification of Coordinated Expression of Genes Found in a Functionally Enriched Coexpression Module

Soichi Ozaki; Yoshiyuki Ogata; Kunihiro Suda; Atsushi Kurabayashi; Tatsuya Suzuki; Naoki Yamamoto; Yoko Iijima; Taneaki Tsugane; Takashi Fujii; Chiaki Konishi; Shuji Inai; Somnuk Bunsupa; Mami Yamazaki; Daisuke Shibata; Koh Aoki

Gene-to-gene coexpression analysis is a powerful approach to infer the function of uncharacterized genes. Here, we report comprehensive identification of coexpression gene modules of tomato (Solanum lycopersicum) and experimental verification of coordinated expression of module member genes. On the basis of the gene-to-gene correlation coefficient calculated from 67 microarray hybridization data points, we performed a network-based analysis. This facilitated the identification of 199 coexpression modules. A gene ontology annotation search revealed that 75 out of the 199 modules are enriched with genes associated with common functional categories. To verify the coexpression relationships between module member genes, we focused on one module enriched with genes associated with the flavonoid biosynthetic pathway. A non-enzyme, non-transcription factor gene encoding a zinc finger protein in this module was overexpressed in S. lycopersicum cultivar Micro-Tom, and expression levels of flavonoid pathway genes were investigated. Flavonoid pathway genes included in the module were up-regulated in the plant overexpressing the zinc finger gene. This result demonstrates that coexpression modules, at least the ones identified in this study, represent actual transcriptional coordination between genes, and can facilitate the inference of tomato gene function.


PLOS ONE | 2012

ECOMICS: A Web-Based Toolkit for Investigating the Biomolecular Web in Ecosystems Using a Trans-omics Approach

Yoshiyuki Ogata; Eisuke Chikayama; Yusuke Morioka; R. Craig Everroad; Amiu Shino; Akihiro Matsushima; Hideaki Haruna; Shigeharu Moriya; Tetsuro Toyoda; Jun Kikuchi

Ecosystems can be conceptually thought of as interconnected environmental and metabolic systems, in which small molecules to macro-molecules interact through diverse networks. State-of-the-art technologies in post-genomic science offer ways to inspect and analyze this biomolecular web using omics-based approaches. Exploring useful genes and enzymes, as well as biomass resources responsible for anabolism and catabolism within ecosystems will contribute to a better understanding of environmental functions and their application to biotechnology. Here we present ECOMICS, a suite of web-based tools for ECosystem trans-OMICS investigation that target metagenomic, metatranscriptomic, and meta-metabolomic systems, including biomacromolecular mixtures derived from biomass. ECOMICS is made of four integrated webtools. E-class allows for the sequence-based taxonomic classification of eukaryotic and prokaryotic ribosomal data and the functional classification of selected enzymes. FT2B allows for the digital processing of NMR spectra for downstream metabolic or chemical phenotyping. Bm-Char allows for statistical assignment of specific compounds found in lignocellulose-based biomass, and HetMap is a data matrix generator and correlation calculator that can be applied to trans-omics datasets as analyzed by these and other web tools. This web suite is unique in that it allows for the monitoring of biomass metabolism in a particular environment, i.e., from macromolecular complexes (FT2DB and Bm-Char) to microbial composition and degradation (E-class), and makes possible the understanding of relationships between molecular and microbial elements (HetMap). This website is available to the public domain at: https://database.riken.jp/ecomics/.


Plant Physiology | 2015

Multiomics in Grape Berry Skin Revealed Specific Induction of the Stilbene Synthetic Pathway by Ultraviolet-C Irradiation

Mami Suzuki; Ryo Nakabayashi; Yoshiyuki Ogata; Nozomu Sakurai; Toshiaki Tokimatsu; Susumu Goto; Makoto Suzuki; Michal Jasinski; Enrico Martinoia; Shungo Otagaki; Shogo Matsumoto; Kazuki Saito; Katsuhiro Shiratake

Grape berry skin shows a specific induction of the resveratrol synthetic pathway by UV-C. Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies.


Planta | 2012

Construction and analysis of EST libraries of the trans-polyisoprene producing plant, Eucommia ulmoides Oliver

Nobuaki Suzuki; Hirotaka Uefuji; Takashi Nishikawa; Yukio Mukai; Atsushi Yamashita; Masahira Hattori; Naotake Ogasawara; Takeshi Bamba; Ei’ichiro Fukusaki; Akio Kobayashi; Yoshiyuki Ogata; Nozomu Sakurai; Hideyuki Suzuki; Daisuke Shibata; Yoshihisa Nakazawa

Eucommia ulmoides Oliver is one of a few woody plants capable of producing abundant quantities of trans-polyisoprene rubber in their leaves, barks, and seed coats. One cDNA library each was constructed from its outer stem tissue and inner stem tissue. They comprised a total of 27,752 expressed sequence tags (ESTs) representing 10,520 unigenes made up of 4,302 contigs and 6,218 singletons. Homologues of genes coding for rubber particle membrane proteins that participate in the synthesis of high-molecular poly-isoprene in latex were isolated, as well as those encoding known major latex proteins (MLPs). MLPs extensively shared ESTs, indicating their abundant expression during trans-polyisoprene rubber biosynthesis. The six mevalonate pathway genes which are implicated in the synthesis of isopentenyl diphosphate (IPP), a starting material of poly-isoprene biosynthesis, were isolated, and their role in IPP biosynthesis was confirmed by functional complementation of suitable yeast mutants. Genes encoding five full-length trans-isoprenyl diphosphate synthases were also isolated, and two among those synthesized farnesyl diphosphate from IPP and dimethylallyl diphosphate, an assumed intermediate of rubber biosynthesis. This study should provide a valuable resource for further studies of rubber synthesis in E. ulmoides.


Plant Journal | 2015

Identification of putative target genes of bZIP19, a transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots

Shoko Inaba; Rie Kurata; Mami Kobayashi; Yoko Yamagishi; Izumi C. Mori; Yoshiyuki Ogata; Yoichiro Fukao

Zinc (Zn) depletion adversely affects plant growth. To avoid lethal depletion of cellular Zn, plants have evolved mechanisms to adjust the expression of genes associated with Zn homeostasis, the details of which are poorly understood. In the present study, we isolated an Arabidopsis thaliana T-DNA insertion mutant that exhibited hypersensitivity to Zn depletion. By monitoring root development under Zn-deficient conditions, we isolated a single mutant lacking the basic-region leucine-zipper transcription factor gene bZIP19. To identify proteins whose expression is affected by bZIP19, an iTRAQ-based quantitative proteomics analysis was performed using microsomal proteins from wild-type and the bzip19 mutant A. thaliana roots grown on Basal and Zn-deficient media. Of the 797 proteins identified, expression of two members of the Zrt- and Irt-related protein family, ZIP3 and ZIP9, and three defensin-like family proteins was markedly induced in wild-type but not in the bzip19 mutant under Zn-deficient conditions. Furthermore, selected reaction monitoring and quantitative real-time PCR revealed that ZIP9 expression is mediated by bZIP19 and may be partly supported by bZIP23, a homolog of bZIP19. Mutant analysis revealed that ZIP9 is involved in uptake of Zn by the roots, and the mutant lacking ZIP9 was significantly more sensitive to Zn depletion than the wild-type. These results demonstrate that bZIP19 mainly contributes to expression of genes, such as ZIP9, under Zn-deficient conditions.

Collaboration


Dive into the Yoshiyuki Ogata's collaboration.

Top Co-Authors

Avatar

Daisuke Shibata

Kyoto Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Kikuchi

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rie Kurata

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mami Kobayashi

Nara Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge