Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yosuke Kawase is active.

Publication


Featured researches published by Yosuke Kawase.


Circulation Research | 2007

Deletion of LOX-1 Reduces Atherogenesis in LDLR Knockout Mice Fed High Cholesterol Diet

Jawahar L. Mehta; Nobuhito Sanada; Chang Ping Hu; Jiawei Chen; Abhijit Dandapat; Fumiaki Sugawara; Hiroo Satoh; Kazuhiko Inoue; Yosuke Kawase; Kou Ichi Jishage; Hiroshi Suzuki; Motohiro Takeya; Laura K. Schnackenberg; Richard D. Beger; Paul L. Hermonat; Maria Thomas; Tatsuya Sawamura

Atherosclerosis is associated with oxidative stress and inflammation, and upregulation of LOX-1, an endothelial receptor for oxidized LDL (oxLDL). Here, we describe generation of LOX-1 knockout (KO) mice in which binding of oxLDL to aortic endothelium was reduced and endothelium-dependent vasorelaxation preserved after treatment with oxLDL (P<0.01 versus wild-type mice). To address whether endothelial functional preservation might lead to reduction in atherogenesis, we crossed LOX-1 KO mice with LDLR KO mice and fed these mice 4% cholesterol/10% cocoa butter diet for 18 weeks. Atherosclerosis was found to cover 61±2% of aorta in the LDLR KO mice, but only 36±3% of aorta in the double KO mice. Luminal obstruction and intima thickness were significantly reduced in the double KO mice (versus LDLR KO mice). Expression of redox-sensitive NF-&kgr;B and the inflammatory marker CD68 in LDLR KO mice was increased (P<0.01 versus wild-type mice), but not in the double KO mice. On the other hand, antiinflammatory cytokine IL-10 expression and superoxide dismutase activity were low in the LDLR KO mice (P<0.01 versus wild-type mice), but not in the double KO mice. Endothelial nitric oxide synthase expression was also preserved in the double KO mice. The proinflammatory signal MAPK P38 was activated in the LDLR KO mice, and LOX-1 deletion reduced this signal. In conclusion, LOX-1 deletion sustains endothelial function leading to a reduction in atherogenesis in association with reduction in proinflammatory and prooxidant signals.


Genes to Cells | 2000

The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development

Takayuki Ueda; Kuniya Abe; Asuka Miura; Misako Yuzuriha; Mohamad Zubair; Motoko Noguchi; Katsutoshi Niwa; Yosuke Kawase; Tomohiro Kono; Yoichi Matsuda; Hirokazu Fujimoto; Hideo Shibata; Yoshihide Hayashizaki; Hiroyuki Sasaki

Germline‐specific differential DNA methylation that persists through fertilization and embryonic development is thought to be the ‘imprint’ distinguishing the parental alleles of imprinted genes. If such methylation is to work as the imprinting mechanism, however, it has to be reprogrammed following each passage through the germline. Previous studies on maternally methylated genes have shown that their methylation imprints are first erased in primordial germ cells (PGCs) and then re‐established during oocyte growth.


Molecular and Cellular Biology | 2003

Cardiac p300 is involved in myocyte growth with decompensated heart failure

Tetsuhiko Yanazume; Koji Hasegawa; Tatsuya Morimoto; Teruhisa Kawamura; Hiromichi Wada; Akira Matsumori; Yosuke Kawase; Maretoshi Hirai; Toru Kita

ABSTRACT A variety of stresses on the heart initiate a number of subcellular signaling pathways, which finally reach the nuclei of cardiac myocytes and cause myocyte hypertrophy with heart failure. However, common nuclear pathways that lead to this state are unknown. A zinc finger protein, GATA-4, is one of the transcription factors that mediate changes in gene expression during myocardial-cell hypertrophy. p300 not only acts as a transcriptional coactivator of GATA-4, but also possesses an intrinsic histone acetyltransferase activity. In primary cardiac myocytes derived from neonatal rats, we show that stimulation with phenylephrine increased an acetylated form of GATA-4 and its DNA-binding activity, as well as expression of p300. A dominant-negative mutant of p300 suppressed phenylephrine-induced nuclear acetylation, activation of GATA-4-dependent endothelin-1 promoters, and hypertrophic responses, such as increase in cell size and sarcomere organization. In sharp contrast to the activation of cardiac MEK-1, which phosphorylates GATA-4 and causes compensated hypertrophy in vivo, p300-mediated acetylation of mouse cardiac nuclear proteins, including GATA-4, results in marked eccentric dilatation and systolic dysfunction. These findings suggest that p300-mediated nuclear acetylation plays a critical role in the development of myocyte hypertrophy and represents a pathway that leads to decompensated heart failure.


Molecular and Cellular Biology | 2002

Hydrocephalus, Situs Inversus, Chronic Sinusitis, and Male Infertility in DNA Polymerase λ-Deficient Mice: Possible Implication for the Pathogenesis of Immotile Cilia Syndrome

Yosuke Kobayashi; Miho Watanabe; Yuki Okada; Hirofumi Sawa; Hiroyuki Takai; Makoto Nakanishi; Yosuke Kawase; Hiroshi Suzuki; Kazuo Nagashima; Kyoji Ikeda; Noboru Motoyama

ABSTRACT A growing number of DNA polymerases have been identified, although their physiological function and relation to human disease remain mostly unknown. DNA polymerase λ (Pol λ; also known as Pol β2) has recently been identified as a member of the X family of DNA polymerases and shares 32% amino acid sequence identity with DNA Pol β within the polymerase domain. With the use of homologous recombination, we generated Pol λ−/− mice. Pol λ−/− mice develop hydrocephalus with marked dilation of the lateral ventricles and exhibit a high rate of mortality after birth, although embryonic development appears normal. Pol λ−/− mice also show situs inversus totalis and chronic suppurative sinusitis. The surviving male, but not female, Pol λ−/− mice are sterile as a result of spermatozoal immobility. Microinjection of sperm from male Pol λ−/− mice into oocytes gives rise to normal offspring, suggesting that the meiotic process is not impaired. Ultrastructural analysis reveals that inner dynein arms of cilia from both the ependymal cell layer and respiratory epithelium are defective, which may underlie the pathogenesis of hydrocephalus, situs inversus totalis, chronic sinusitis, and male infertility. Sensitivity of Pol λ−/− cells to various kinds of DNA damage is indistinguishable from that of Pol λ+/+ cells. Collectively, Pol λ−/− mice may provide a useful model for clarifying the pathogenesis of immotile cilia syndrome.


Circulation | 2006

Absence of Malonyl Coenzyme A Decarboxylase in Mice Increases Cardiac Glucose Oxidation and Protects the Heart From Ischemic Injury

Jason R.B. Dyck; Teresa A. Hopkins; Sébastien Bonnet; Evangelos D. Michelakis; Martin E. Young; Miho Watanabe; Yosuke Kawase; Kou-ichi Jishage; Gary D. Lopaschuk

Background— Acute pharmacological inhibition of cardiac malonyl coenzyme A decarboxylase (MCD) protects the heart from ischemic damage by inhibiting fatty acid oxidation and stimulating glucose oxidation. However, it is unknown whether chronic inhibition of MCD results in altered cardiac function, energy metabolism, or ischemic cardioprotection. Methods and Results— Mcd-deficient mice were produced and assessed for in vivo cardiac function as well as ex vivo cardiac function, energy metabolism, and ischemic tolerance. In vivo and ex vivo cardiac function was similar in wild-type and mcd−/− mice. Ex vivo working hearts from mcd−/− and wild-type mice displayed no significant differences in rates of fatty acid oxidation, glucose oxidation, or glycolysis. However, cardiac deletion of mcd resulted in an increased expression of genes regulating fatty acid utilization that may compensate for the loss of MCD protein and likely contributes to the absence of changes in energy metabolism in the aerobic heart. Despite the lack of changes in fatty acid utilization, hearts from mcd−/− mice displayed a marked preference for glucose utilization after ischemia, which correlated with a significant cardioprotection of ischemic hearts from mcd−/− mice compared with wild-type mice. Conclusions— Deletion of MCD markedly increases glucose oxidation and improves functional recovery of the heart after ischemia. As a result, chronic pharmacological inhibition of MCD may be a viable approach to treat myocardial ischemia.


Circulation | 2006

Histone Acetyltransferase Activity of p300 Is Required for the Promotion of Left Ventricular Remodeling After Myocardial Infarction in Adult Mice In Vivo

Shoichi Miyamoto; Teruhisa Kawamura; Tatsuya Morimoto; Koh Ono; Hiromichi Wada; Yosuke Kawase; Akira Matsumori; Ryosuke Nishio; Toru Kita; Koji Hasegawa

Background— Left ventricular (LV) remodeling after myocardial infarction is associated with hypertrophy of surviving myocytes and represents a major process that leads to heart failure. One of the intrinsic histone acetyltransferases, p300, serves as a coactivator of hypertrophy-responsive transcriptional factors such as a cardiac zinc finger protein GATA-4 and is involved in its hypertrophic stimulus-induced acetylation and DNA binding. However, the role of p300-histone acetyltransferase activity in LV remodeling after myocardial infarction in vivo is unknown. Methods and Results— To solve this problem, we have generated transgenic mice overexpressing intact p300 or mutant p300 in the heart. As the result of its 2–amino acid substitution in the p300-histone acetyltransferase domain, this mutant lost its histone acetyltransferase activity and was unable to activate GATA-4–dependent transcription. The two kinds of transgenic mice and the wild-type mice were subjected to myocardial infarction or sham operation at the age of 12 weeks. Intact p300 transgenic mice showed significantly more progressive LV dilation and diminished systolic function after myocardial infarction than wild-type mice, whereas mutant p300 transgenic mice did not show this. Conclusions— These findings demonstrate that cardiac overexpression of p300 promotes LV remodeling after myocardial infarction in adult mice in vivo and that histone acetyltransferase activity of p300 is required for these processes.


American Journal of Physiology-endocrinology and Metabolism | 2009

Chronically elevated plasma C-type natriuretic peptide level stimulates skeletal growth in transgenic mice

Takei Kake; Hidetomo Kitamura; Yuichiro Adachi; Tetsuro Yoshioka; Tomoyuki Watanabe; Hiroaki Matsushita; Toshihito Fujii; Eri Kondo; Takanori Tachibe; Yosuke Kawase; Kou Ichi Jishage; Akihiro Yasoda; Masashi Mukoyama; Kazuwa Nakao

C-type natriuretic peptide (CNP) plays a critical role in endochondral ossification through guanylyl cyclase-B (GC-B), a natriuretic peptide receptor subtype. Cartilage-specific overexpression of CNP enhances skeletal growth and rescues the dwarfism in a transgenic achondroplasia model with constitutive active mutation of fibroblast growth factor receptor-3. For future clinical application, the efficacy of CNP administration on skeletal growth must be evaluated. Due to the high clearance of CNP, maintaining a high concentration is technically difficult. However, to model high blood CNP concentration, we established a liver-targeted CNP-overexpressing transgenic mouse (SAP-CNP tgm). SAP-CNP tgm exhibited skeletal overgrowth in proportion to the blood CNP concentration and revealed phenotypes of systemic stimulation of cartilage bones, including limbs, paws, costal bones, spine, and skull. Furthermore, in SAP-CNP tgm, the size of the foramen magnum, the insufficient formation of which results in cervico-medullary compression in achondroplasia, also showed significant increase. CNP primarily activates GC-B, but under high concentrations it cross-reacts with guanylyl cyclase-A (GC-A), a natriuretic peptide receptor subtype of atrial natriuretic peptides (ANP) and brain natriuretic peptides (BNP). Although activation of GC-A could alter cardiovascular homeostasis, leading to hypotension and heart weight reduction, the skeletal overgrowth phenotype in the line of SAP-CNP tgm with mild overexpression of CNP did not accompany decrease of systolic blood pressure or heart weight. These results suggest that CNP administration stimulates skeletal growth without adverse cardiovascular effect, and thus CNP could be a promising remedy targeting achondroplasia.


Hypertension | 2008

Modulation of Angiotensin II–Mediated Hypertension and Cardiac Remodeling by Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 Deletion

Chang-Ping Hu; Abhijit Dandapat; Liuqin Sun; Muhammad R. Marwali; Nobutaka Inoue; Fumiaki Sugawara; Kazuhiko Inoue; Yosuke Kawase; Kou-ichi Jishage; Hiroshi Suzuki; Paul L. Hermonat; Tatsuya Sawamura; Jawahar L. Mehta

Angiotensin II via type 1 receptor activation upregulates the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and LOX-1 activation, in turn, upregulates angiotensin II type 1 receptor expression. We postulated that interruption of this positive feedback loop might attenuate the genesis of angiotensin II–induced hypertension and subsequent cardiac remodeling. To examine this postulate, LOX-1 knockout and wild-type mice were infused with angiotensin II or norepinephrine (control for angiotensin II) for 4 weeks. Angiotensin II–, but not norepinephrine-, induced hypertension was attenuated in LOX-1 knockout mice. Angiotensin II–induced cardiac remodeling was also attenuated in LOX-1 knockout mice. Importantly, angiotensin II type 1 receptor expression was reduced, and the expression and activity of endothelial NO synthase were preserved in the tissues of LOX-1 knockout mice given angiotensin II. Reactive oxygen species generation, nicotinamide-adenine dinucleotide phosphate oxidase expression, and phosphorylation of p38 and p44/42 mitogen-activated protein kinases were also much less pronounced in the LOX-1 knockout mice given angiotensin II. These alterations in biochemical and structural abnormalities were associated with preservation of cardiac hemodynamics in the LOX-1 knockout mice. To confirm that fibroblast function is modulated in the absence of LOX-1, cardiac fibroblasts from wild-type and LOX-1 knockout mice were treated with angiotensin II. Indeed, LOX-1 knockout mice cardiac fibroblasts revealed an attenuated profibrotic response on treatment with angiotensin II. These observations provide strong evidence that LOX-1 is a key modulator of the development of angiotensin II–induced hypertension and subsequent cardiac remodeling.


Biology of Reproduction | 2005

Possibility of Long-Term Preservation of Freeze-Dried Mouse Spermatozoa

Yosuke Kawase; Hiroshi Araya; Nobuo Kamada; Kou-ichi Jishage; Hiroshi Suzuki

Abstract Freeze-dried mouse spermatozoa are capable of participating in normal embryonic development after injection into oocytes. When the freeze-dried spermatozoa are used as a method for storage of genetic materials, however, it is essential to assure the relevance of long-term preservation over several decades or centuries. Thus, we applied the theory of accelerated degradation kinetics to freeze-dried mouse spermatozoa. Thermal denaturation kinetics were determined based on Arrhenius plots derived from transition-state theory analysis at three elevated temperatures: 30, 40, and 50°C. Accelerated degradation kinetics were calculated by extrapolation of Arrhenius plots. This theory also is being applied to the long-term stability of drugs. The estimated rate of development to the blastocyst stage at 3 and 6 mo and at 1, 10, and 100 yr of sperm storage at 4°C were 21.60%, 7.91%, 1.00%, 0%, and 0%, respectively. At −80°C, estimated development rates to the blastocyst stage that would be expected after 100 yr of storage did not decline significantly. In addition, after 3 or 6 mo of storage at 4 or −80°C, preimplantation development of the embryos derived from intracytoplasmic sperm injection (ICSI) was examined. The actual developmental rates to the blastocyst stage from ICSI by freeze-dried sperm stored for 3 mo at 4 and −80°C were 21% and 62%, respectively, and the rates for such sperm stored for 6 mo were 13% and 59%, respectively. These results indicate that the determination of accelerated degradation kinetics can be applied to the preservation of freeze-dried mouse spermatozoa. Furthermore, for long-term preservation, freeze-dried mouse spermatozoa appear to require being kept at lower than −80°C.


Biology of Reproduction | 2002

Effect of Partial Incision of the Zona Pellucida by Piezo-Micromanipulator for In Vitro Fertilization Using Frozen-Thawed Mouse Spermatozoa on the Developmental Rate of Embryos Transferred at the 2-Cell Stage

Yosuke Kawase; Takamitsu Iwata; Otoya Ueda; Nobuo Kamada; Takanori Tachibe; Yukari Aoki; Kou-ichi Jishage; Hiroshi Suzuki

Abstract Cryopreservation of mouse spermatozoa is widely used, although considerable strain differences in fertilization rates using frozen-thawed mouse spermatozoa have been described. The C57BL/6 mouse strain is a very widely used for establishment of transgenic mice, but the fertilization rate associated with the use of cryopreserved C57BL/6 spermatozoa is very low compared with rates for other inbred strains. We have recently solved this difficulty by in vitro fertilization (IVF) in combination with partial zona pellucida dissection (PZD). However, this technique requires culture of fertilized eggs with PZD in vitro up to morula or blastocyst stage before transfer into the uterus because blastomeres are lost after transfer into the oviduct because of the relatively large artificial slit in the zona pellucida. To overcome this problem, we performed a partial zona pellucida incision by using a piezo-micromanipulator (ZIP) for IVF with frozen-thawed mouse spermatozoa. The blunt end of the micropipette touched the surface of the zona pellucida of the oocytes, and piezo pulses were used to incise the zona pellucida while the pipette was moved along by the surface of zona pellucida. The length of the incision was πr/6 μm. When cumulus-free ZIP and PZD oocytes were inseminated with frozen-thawed genetically modified C57BL/6J spermatozoa, the fertilization rates of ZIP and PZD oocytes were 52% and 48%, respectively. After embryo transfer at the 2-cell stage, 18% and 2% of the transferred embryos with ZIP and PZD developed to term, respectively. This difference was significant (P < 0.05). When ZIP and PZD zygotes were cultured to blastocyst stage and subsequently transferred to uterine horns of recipient animals, the difference between ZIP and PZD zygotes for development rate to full term was not significant. Our results indicate that ZIP is an effective alternative technique for IVF using cryopreserved mouse spermatozoa and subsequent embryo transfer.

Collaboration


Dive into the Yosuke Kawase's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Otoya Ueda

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Naoko A. Wada

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuo Kamada

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge