Youai Qiu
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Youai Qiu.
Angewandte Chemie | 2016
Youai Qiu; Bin Yang; Can Zhu; Jan-E. Bäckvall
Abstract A highly efficient palladium‐catalyzed oxidative borylation of enallenes was developed for the selective formation of cyclobutene derivatives and fully‐substituted alkenylboron compounds. Cyclobutenes are formed as the exclusive products in MeOH in the presence of H2O and Et3N, whereas the use of AcOH leads to alkenylboron compounds. Both reactions showed a broad substrate scope and good tolerance for various functional groups, including carboxylic acid ester, free hydroxy, imide, and alkyl groups. Furthermore, transformations of the borylated products were conducted to show their potential applications.
Journal of the American Chemical Society | 2016
Youai Qiu; Bin Yang; Can Zhu; Jan-E. Bäckvall
A highly selective cascade reaction that allows the direct transformation of dienallenes to spirocyclobutenes (spiro[3.4]octenes) as single diastereoisomers has been developed. The reaction involves formation of overall four C–C bonds and proceeds via a palladium-catalyzed oxidative transformation with insertion of olefin, olefin, and carbon monoxide. Under slightly different reaction conditions, an additional CO insertion takes place to give spiro[4.4]nonenes with formation of overall five C–C bonds.
Chemistry: A European Journal | 2016
Can Zhu; Bin Yang; Youai Qiu; Jan-E. Bäckvall
An olefin-directed palladium-catalyzed regio- and stereoselective hydroboration of allenes has been developed to afford fully substituted alkenylboron compounds. The reaction showed a broad substrate scope: a number of functionalized allenes, including 2,3-dienoate, 3,4-dienoate, 3,4-dienol, 1,2-allenylphosphonate, and alkyl-substituted allenes, could be used in this olefin-directed allene hydroboration. The olefin unit was proven to be an indispensable element for this transformation.
Angewandte Chemie | 2016
Bin Yang; Can Zhu; Youai Qiu; Jan-E. Bäckvall
Abstract An efficient one‐pot method for the enzyme‐ and ruthenium‐catalyzed enantioselective transformation of α‐allenic alcohols into 2,3‐dihydrofurans has been developed. The method involves an enzymatic kinetic resolution and a subsequent ruthenium‐catalyzed cycloisomerization, which provides 2,3‐dihydrofurans with excellent enantioselectivity (up to >99 % ee). A ruthenium carbene species was proposed as a key intermediate in the cycloisomerization.
Angewandte Chemie | 2016
Can Zhu; Bin Yang; Youai Qiu; Jan-E. Bäckvall
An olefin-assisted palladium-catalyzed oxidative carbocyclization-alkoxycarbonylation of bisallenes to afford seven-membered carbocycles has been established. This dehydrogenative coupling reaction showed excellent substrate scope and functional group compatibility. The reaction exhibited high chemo- and regioselectivity, and ester 3 was the only product obtained. The olefin unit has been proven to be indispensable during the reaction. Moreover, intramolecular oxidative coupling suggests that the reaction proceeds via a (π-allyl)palladium intermediate.
Angewandte Chemie | 2017
Youai Qiu; Bin Yang; Tuo Jiang; Can Zhu; Jan-E. Bäckvall
A highly selective palladium-catalyzed oxidative carbonylation/carbocyclization/alkoxycarbonylation of enallenols to afford spirolactones bearing an all-carbon quaternary center was developed. This transformation involves the overall formation of three C-C bonds and one C-O bond through a cascade insertion of carbon monoxide (CO), an olefin, and CO. Preliminary experiments on chiral anion-induced enantioselective carbonylation/carbocyclization of enallenols afforded spirolactones with moderate enantioselectivity.
Chemistry: A European Journal | 2017
Jeffrey L. Henry; Daniels Posevins; Bin Yang; Youai Qiu; Jan-E. Bäckvall
An olefin-assisted, palladium-catalyzed oxidative alkynylation of enallenes for regio- and stereoselective synthesis of substituted trienynes has been developed. The reaction shows a broad substrate scope and good tolerance for various functional groups on the allene moiety, including carboxylic acid esters, free hydroxyls, imides, and alkyl groups. Also, a wide range of terminal alkynes with electron-donating and electron-withdrawing aryls, heteroaryls, alkyls, trimethylsilyl, and free hydroxyl groups are tolerated.
Angewandte Chemie | 2017
Bin Yang; Youai Qiu; Tuo Jiang; William D. Wulff; Xiaopeng Yin; Can Zhu; Jan-E. Bäckvall
An enantioselective PdII /Brønsted acid-catalyzed carbonylative carbocyclization of enallenes ending with a cross-dehydrogenative coupling (CDC) with a terminal alkyne was developed. VAPOL phosphoric acid was found as the best co-catalyst among the examined 28 chiral acids, for inducing the enantioselectivity of α-chiral ketones. As a result, a number of chiral cyclopentenones were easily synthesized in good to excellent enantiomeric ratio with good yields.
Journal of the American Chemical Society | 2018
Daniels Posevins; Youai Qiu; Jan-E. Bäckvall
A highly diastereoselective palladium-catalyzed oxidative carbocyclization-borylation of enallenes assisted by a weakly coordinating hydroxyl group was developed. The reaction afforded functionalized cyclohexenol derivatives, in which the 1,3-relative stereochemistry is controlled (d.r. > 50:1). Other weakly coordinating oxygen-containing groups (ketone, alkoxide, acetate) also assisted the carbocyclization toward cyclohexenes. The reaction proceeds via a ligand exchange on Pd of the weakly coordinating group with a distant olefin group. The high diastereoselectivity of the hydroxyl-directed reaction could be rationalized by a face-selective coordination of the distant olefin. It was demonstrated that the primary coordination of the close-by oxygen-containing functionality was necessary for the reaction to occur and removal of this functionality shut down the reaction.
Angewandte Chemie | 2017
Youai Qiu; Daniels Posevins; Jan-E. Bäckvall
A highly selective palladium-catalyzed allenic C-H bond oxidation was developed, which provides a novel and straightforward synthesis of [3]dendralene derivatives. A variety of [3]dendralenes with diverse substitution patterns are accessible with good efficiency and high stereoselectivity. The reaction tolerates a broad substrate scope containing various functional groups on the allene moiety, including ketone, aldehyde, ester and phenyl groups. Also, a wide range of olefins with both electron-donating and electron-withdrawing aryls, acrylate, sulfone and phosphonate groups are tolerated.