Youichi Kamae
University of Tsukuba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Youichi Kamae.
Scientific Reports | 2013
Harry J. Dowsett; Kevin M. Foley; Danielle K. Stoll; Mark A. Chandler; Linda E. Sohl; Mats Bentsen; Bette L. Otto-Bliesner; Fran J. Bragg; Wing-Le Chan; Camille Contoux; Aisling M. Dolan; Alan M. Haywood; Jeff Jonas; Anne Jost; Youichi Kamae; Gerrit Lohmann; Daniel J. Lunt; Kerim H. Nisancioglu; Ayako Abe-Ouchi; Gilles Ramstein; Christina R. Riesselman; Marci M. Robinson; Nan A. Rosenbloom; Ulrich Salzmann; Christian Stepanek; Stephanie L. Strother; Hiroaki Ueda; Qing Yan; Zhongshi Zhang
The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21st century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction.
Geophysical Research Letters | 2014
Youichi Kamae; Hideo Shiogama; Masahiro Watanabe; Masahide Kimoto
Anomalously high summertime temperatures have occurred with increasing frequency since the late 20th century. It is not clear why hot summers are becoming more frequent despite the recent slowdown in the rise in global surface air temperature. To examine factors affecting the historical variation in the frequency of hot summers over the Northern Hemisphere (NH), we conducted three sets of ensemble simulations with an atmospheric general circulation model. The model accurately reproduced interannual variation and long-term increase in the occurrence of hot summers. Decadal variabilities in the Pacific and Atlantic Oceans accounted for 43 ± 27% of the recent increase over the NH middle latitudes. In addition, direct influence of anthropogenic forcing also contributes to increasing the frequency since the late 20th century. The results suggest that the heat extremes can become more frequent in the coming decade even with the persistent slowdown in the global-mean surface warming.
Current Climate Change Reports | 2015
Youichi Kamae; Masahiro Watanabe; Tomoo Ogura; Masakazu Yoshimori; Hideo Shiogama
Rapid cloud response to instantaneous radiative perturbation in the troposphere due to change in CO2 concentration is called cloud adjustment. Cloud adjustment develops on a short timescale because it is separated from surface temperature-mediated changes in cloud. Adjustments in cloud and tropospheric properties including the hydrological cycle have attracted considerable attention because of their importance in the interpretation of mechanisms of climate change and the identification of sources of uncertainty in climate sensitivity. Modeling studies have clearly revealed that major aspects of the tropospheric adjustment including the warming and drying of the troposphere, associated reduction of low cloud and increasing shortwave cloud radiative forcing, downward shift of the low-cloud layer, and slowdown of the global hydrological cycle, are common among many climate model simulations. Combinations of model simulations with realistic and idealized aqua-planet settings have helped demonstrate the roles of land and robust aspects of the tropospheric adjustment.
Climate Dynamics | 2014
Youichi Kamae; Masahiro Watanabe; Masahide Kimoto; Hideo Shiogama
Land–sea surface air temperature (SAT) contrast, an index of tropospheric thermodynamic structure and dynamical circulation, has shown a significant increase in recent decades over East Asia during the boreal summer. In Part I of this two-part paper, observational data and the results of transient warming experiments conducted using coupled atmosphere–ocean general circulation models (GCMs) are analyzed to examine changes in land–sea thermal contrast and the associated atmospheric circulation over East Asia from the past to the future. The interannual variability of the land–sea SAT contrast over the Far East for 1950–2012 was found to be tightly coupled with a characteristic tripolar pattern of tropospheric circulation over East Asia, which manifests as anticyclonic anomalies over the Okhotsk Sea and around the Philippines, and a cyclonic anomaly over Japan during a positive phase, and vice versa. In response to CO2 increase, the cold northeasterly winds off the east coast of northern Japan and the East Asian rainband were strengthened with the circulation pattern well projected on the observed interannual variability. These results are commonly found in GCMs regardless of future forcing scenarios, indicating the robustness of the East Asian climate response to global warming. The physical mechanisms responsible for the increase of the land–sea contrast are examined in Part II.
Journal of Climate | 2012
Masahiro Watanabe; Hideo Shiogama; Tokuta Yokohata; Youichi Kamae; Masakazu Yoshimori; Tomoo Ogura; James D. Annan; J. C. Hargreaves; Seita Emori; Masahide Kimoto
AbstractThis study proposes a systematic approach to investigate cloud-radiative feedbacks to climate change induced by an increase of CO2 concentrations in global climate models (GCMs). Based on two versions of the Model for Interdisciplinary Research on Climate (MIROC), which have opposite signs for cloud–shortwave feedback (ΔSWcld) and hence different equilibrium climate sensitivities (ECSs), hybrid models are constructed by replacing one or more parameterization schemes for cumulus convection, cloud, and turbulence between them. An ensemble of climate change simulations using a suite of eight models, called a multiphysics ensemble (MPE), is generated. The MPE provides a range of ECS as wide as the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel ensemble and reveals a different magnitude and sign of ΔSWcld over the tropics, which is crucial for determining ECS.It is found that no single process controls ΔSWcld, but that the coupling of two processes does. Namely, changing the cloud and...
Nature Communications | 2015
Hiroaki Ueda; Youichi Kamae; Masamitsu Hayasaki; Akio Kitoh; Shigeru Watanabe; Yurisa Miki; Atsuki Kumai
Recent research indicates that the cooling trend in the tropical Pacific Ocean over the past 15 years underlies the contemporaneous hiatus in global mean temperature increase. During the hiatus, the tropical Pacific Ocean displays a La Niña-like cooling pattern while sea surface temperature (SST) in the Indian Ocean has continued to increase. This SST pattern differs from the well-known La Niña-induced basin-wide cooling across the Indian Ocean on the interannual timescale. Here, based on model experiments, we show that the SST pattern during the hiatus explains pronounced regional anomalies of rainfall in the Asian monsoon region and thermodynamic effects due to specific humidity change are secondary. Specifically, Indo-Pacific SST anomalies cause convection to intensify over the tropical western Pacific, which in turn suppresses rainfall in mid-latitude East Asia through atmospheric teleconnection. Overall, the tropical Pacific SST effect opposes and is greater than the Indian Ocean SST effect.
Bulletin of the American Meteorological Society | 2017
Ryo Mizuta; Akihiko Murata; Masayoshi Ishii; Hideo Shiogama; Kenshi Hibino; Nobuhito Mori; Osamu Arakawa; Yukiko Imada; Kohei Yoshida; Toshinori Aoyagi; Hiroaki Kawase; Masato Mori; Yasuko Okada; Tomoya Shimura; Toshiharu Nagatomo; Mikiko Ikeda; Hirokazu Endo; Masaya Nosaka; Miki Arai; Chiharu Takahashi; Kenji Tanaka; Tetsuya Takemi; Yasuto Tachikawa; Khujanazarov Temur; Youichi Kamae; Masahiro Watanabe; Hidetaka Sasaki; Akio Kitoh; Izuru Takayabu; Eiichi Nakakita
AbstractAn unprecedentedly large ensemble of climate simulations with a 60-km atmospheric general circulation model and dynamical downscaling with a 20-km regional climate model has been performed to obtain probabilistic future projections of low-frequency local-scale events. The climate of the latter half of the twentieth century, the climate 4 K warmer than the preindustrial climate, and the climate of the latter half of the twentieth century without historical trends associated with the anthropogenic effect are each simulated for more than 5,000 years. From large ensemble simulations, probabilistic future changes in extreme events are available directly without using any statistical models. The atmospheric models are highly skillful in representing localized extreme events, such as heavy precipitation and tropical cyclones. Moreover, mean climate changes in the models are consistent with those in phase 5 of the Coupled Model Intercomparison Project (CMIP5) ensembles. Therefore, the results enable the a...
Journal of Advances in Modeling Earth Systems | 2015
S. Dal Gesso; J. J. van der Dussen; A. P. Siebesma; S. R. de Roode; I. A. Boutle; Youichi Kamae; Romain Roehrig; Jessica Vial
Six Single-Column Model (SCM) versions of climate models are evaluated on the basis of their representation of the dependence of the stratocumulus-topped boundary layer regime on the free tropospheric thermodynamic conditions. The study includes two idealized experiments corresponding to the present-day and future climate conditions in order to estimate the low-cloud feedback. Large-Eddy Simulation (LES) results are used as a benchmark and GCM outputs are included to assess whether the SCM results are representative of their 3-D counterparts. The SCMs present a variety of dependencies of the cloud regime on the free tropospheric conditions but, at the same time, several common biases. For all the SCMs the stratocumulus-topped boundary layer is too shallow, too cool, and too moist as compared to the LES results. Moreover, they present a lack of clouds and liquid water and an excess of precipitation. The disagreement among SCMs is even more distinct for the response to a climate perturbation. Even though the overall feedback is positive for all the models, in line with the LES results, the SCMs show a rather noisy behavior, which depends irregularly on the free tropospheric conditions. Finally, the comparison with the host GCM outputs demonstrates that the considered approach is promising but needs to be further generalized for the SCMs to fully capture the behavior of their 3-D counterparts.
Climate Dynamics | 2014
Youichi Kamae; Masahiro Watanabe; Masahide Kimoto; Hideo Shiogama
Abstract In this the second of a two-part study, we examine the physical mechanisms responsible for the increasing contrast of the land–sea surface air temperature (SAT) in summertime over the Far East, as observed in recent decades and revealed in future climate projections obtained from a series of transient warming and sensitivity experiments conducted under the umbrella of the Coupled Model Intercomparison Project phase 5. On a global perspective, a strengthening of land–sea SAT contrast in the transient warming simulations of coupled atmosphere–ocean general circulation models is attributed to an increase in sea surface temperature (SST). However, in boreal summer, the strengthened contrast over the Far East is reproduced only by increasing atmospheric CO2 concentration. In response to SST increase alone, the tropospheric warming over the interior of the mid- to high-latitude continents including Eurasia are weaker than those over the surrounding oceans, leading to a weakening of the land–sea SAT contrast over the Far East. Thus, the increasing contrast and associated change in atmospheric circulation over East Asia is explained by CO2-induced continental warming. The degree of strengthening of the land–sea SAT contrast varies in different transient warming scenarios, but is reproduced through a combination of the CO2-induced positive and SST-induced negative contributions to the land–sea contrast. These results imply that changes of climate patterns over the land–ocean boundary regions are sensitive to future scenarios of CO2 concentration pathways including extreme cases.
Geophysical Research Letters | 2014
Masahiro Watanabe; Youichi Kamae; Masahide Kimoto
Regional pattern of the mean precipitation changes in the latter half of the 21st century (ΔP¯) has been interpreted in terms of mean precipitation in current climate and a magnitude of increase in mean sea surface temperature (SST). Here we use state-of-the-art climate model ensembles from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and present that the amplitude of the precipitation variability, relative to slowly varying mean precipitation, coherently increases with ΔP¯, anchored over the central equatorial Pacific where a large SST swing occurs during El Nino–Southern Oscillation (ENSO) cycles. This increase owes to skewed probability distribution of precipitation as well as an asymmetrical precipitation response to positive and negative in situ SST anomalies and is robust despite uncertainty in the future ENSO amplitude change. The CMIP5 model ensembles also give a robust estimate of the projected ΔP¯ over the central equatorial Pacific, showing a 7% increase per unit increase of global-mean surface temperature. Observational constraints applied to the above relationship suggest that the amounts of increases in both mean precipitation and variability should be even larger than the model averages.