Youn-Hee Choi
Ewha Womans University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Youn-Hee Choi.
Clinical Cancer Research | 2008
Emily C. Brantley; L. Burton Nabors; G. Yancey Gillespie; Youn-Hee Choi; Cheryl A. Palmer; Keith Harrison; Kevin Roarty; Etty N. Benveniste
Purpose: STATs activate transcription in response to numerous cytokines, controlling proliferation, gene expression, and apoptosis. Aberrant activation of STAT proteins, particularly STAT-3, is implicated in the pathogenesis of many cancers, including GBM, by promoting cell cycle progression, stimulating angiogenesis, and impairing tumor immune surveillance. Little is known about the endogenous STAT inhibitors, the PIAS proteins, in human malignancies. The objective of this study was to examine the expression of STAT-3 and its negative regulator, PIAS3, in human tissue samples from control and GBM brains. Experimental Design: Control and GBM human tissues were analyzed by immunoblotting and immunohistochemistry to determine the activation status of STAT-3 and expression of the PIAS3 protein. The functional consequence of PIAS3 inhibition by small interfering RNA or PIAS3 overexpression in GBM cells was determined by examining cell proliferation, STAT-3 transcriptional activity, and STAT-3 target gene expression. This was accomplished using [3H]TdR incorporation, STAT-3 dominant-negative constructs, reverse transcription-PCR, and immunoblotting. Results and Conclusions: STAT-3 activation, as assessed by tyrosine and serine phosphorylation, was elevated in GBM tissue compared with control tissue. Interestingly, we observed expression of PIAS3 in control tissue, whereas PIAS3 protein expression in GBM tissue was greatly reduced. Inhibition of PIAS3 resulted in enhanced glioblastoma cellular proliferation. Conversely, PIAS3 overexpression inhibited STAT-3 transcriptional activity, expression of STAT-3–regulated genes, and cell proliferation. We propose that the loss of PIAS3 in GBM contributes to enhanced STAT-3 transcriptional activity and subsequent cell proliferation.
Journal of Toxicology and Environmental Health | 2010
Changsuk Moon; Hyun-Jeong Park; Youn-Hee Choi; Eun-Mi Park; Vincent Castranova; Jihee Lee Kang
Nanoparticles are widely used in nanomedicines, including for targeted delivery of pharmacological, therapeutic, and diagnostic agents. Since nanoparticles might translocate across cellular barriers from the circulation into targeted organs, it is important to obtain information concerning the pathophysiologic effects of these particles through systemic migration. In the present study, acute pulmonary responses were examined after intraperitoneal (ip) administration of ultrafine titanium dioxide (TiO2, 40 mg/kg) in mice at rest or in lungs primed with lipopolysaccharide (LPS, ip, 5 mg/kg). Ultrafine TiO2 exposure increased neutrophil influx, protein levels in bronchoalveolar lavage (BAL) fluid, and reactive oxygen species (ROS) activity of BAL cells 4 h after exposure. Concomitantly, the levels of proinflammatory mediators, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and macrophage inflammatory protein (MIP)-2 in BAL fluid and mRNA expression of TNF-α and IL-1β in lung tissue were elevated post ultrafine TiO2 exposure. Ultrafine TiO2 exposure resulted in significant activation of inflammatory signaling molecules, such as c-Src and p38 MAP kinase, in lung tissue and alveolar macrophages, and the nuclear factor (NF)-κB pathway in pulmonary tissue. Furthermore, ultrafine TiO2 additively enhanced these inflammatory parameters and this signaling pathway in lungs primed with lipopolysaccharide (LPS). Contrary to this trend, a synergistic effect was found for TNF-α at the level of protein and mRNA expression. These results suggest that ultrafine TiO2 (P25) induces acute lung inflammation after ip administration, and exhibits additive or synergistic effects with LPS, at least partly, via activation of oxidant-dependent inflammatory signaling and the NF-κB pathway, leading to increased production of proinflammatory mediators.
Biochimica et Biophysica Acta | 2011
Jin A. Shin; Ji Ha Choi; Youn-Hee Choi; Eun-Mi Park
Aquaporin 4 (AQP4), the most abundant water channel protein in the brain, is involved in brain edema induced by ischemic insults. To evaluate whether the neuroprotective effects of estrogen are associated with AQP4 expression and edema formation, changes in AQP levels and ischemic edema were examined in the brains of male and female mice subjected to transient middle cerebral artery occlusion. Infarct volume and edema formation were markedly less in females than in males. AQP4 expression in the ischemic cortex of females was relatively well preserved, whereas it was significantly decreased in males. These effects disappeared in ovariectomized females but were reversed by estrogen replacement. Furthermore, AQP4 expression was decreased with increased brain edema in females treated with ICI182,780, an estrogen receptor antagonist. These findings suggest that the estrogen effect on the reduction of ischemic brain edema is associated with the preserved level of AQP4 that is partly mediated by estrogen receptors.
Neuroscience | 2013
Jin A. Shin; S.J. Yang; Sae Im Jeong; Hyunju Park; Youn-Hee Choi; Eun-Mi Park
Estrogen receptors (ERs) play important roles in estrogen-mediated neuroprotection. However, their effects on blood-brain barrier (BBB) disruption with vasogenic edema after ischemic stroke have not been determined. We evaluated a role for ERβ in the brain without effects in the peripheral reproductive organs for the amelioration of vasogenic edema following ischemic stroke. Transient focal ischemic stroke was induced in ovariectomized female C57BL/6 mice (age 10-11weeks) that were treated with the ERβ-selective agonist diarylpropionitrile (DPN). BBB breakdown as determined by the extravasation of endogenous immunoglobulin G (IgG), vasogenic edema, and the infarct volume was significantly reduced by DPN compared to vehicle. Protein expressions of endothelial tight junction proteins (occludin and claudin-5) and the water channel protein aquaporin 4 in the ischemic cortex were not changed by DPN. However, protein levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1α (HIF-1α), a transcription factor that increases VEGF expression, were significantly decreased in the ischemic cortex by DPN. These results suggest that ERβ contributes to the reduction of vasogenic edema caused by BBB breakdown via the inhibition of HIF-1α and VEGF following ischemic stroke.
FEBS Letters | 2004
Youn-Hee Choi; Ha-il Kim; Je Kyung Seong; Dae-Yeul Yu; Hyeseong Cho; Mi-Ock Lee; Jae Myun Lee; Yong-Ho Ahn; Se Jong Kim; Jeon Han Park
Ligand activation of peroxisome proliferator‐activated receptor γ (PPARγ) has been reported to induce growth inhibition and apoptosis in various cancers including hepatocellular carcinoma (HCC). However, the effect of hepatitis B virus X protein (HBx) on PPARγ activation has not been characterized in hepatitis B virus (HBV)‐associated HCC. Herein, we demonstrated that HBx counteracted growth inhibition caused by PPARγ ligand in HBx‐associated HCC cells. We found that HBx bound to DNA binding domain of PPARγ and HBx/PPARγ interaction blocked nuclear localization and binding to recognition site of PPARγ. HBx significantly suppressed a PPARγ‐mediated transactivation. These results suggest that HBx modulates PPARγ function through protein–protein interaction.
PLOS ONE | 2014
Ara Jo; Hyunju Park; Sung-Hee Lee; So-Hee Ahn; Hee Ja Kim; Eun-Mi Park; Youn-Hee Choi
Reactive oxygen species (ROS) regulate diverse cellular functions by triggering signal transduction events, such as Src and mitogen-activated protein (MAP) kinases. Here, we report the role of caveolin-1 and Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP-2) in H2O2-induced signaling pathway in brain astrocytes. H2O2-mediated oxidative stress induced phosphorylation of caveolin-1 and association between p-caveolin-1 and SHP-2. SHP-2 specifically bound to wild-type caveolin-1 similarly to c-Src tyrosine kinase (CSK), but not to phosphorylation-deficient mutant of caveolin-1 (Y14A), and interfered with complex formation between caveolin-1 and CSK. In the presence of CSK siRNA, binding between caveolin-1 and SHP-2 was enhanced by H2O2 treatment, which led to reduced Src phosphorylation at tyrosine (Tyr) 530 and enhanced Src phosphorylation at Tyr 419. In contrast, siRNA targeting of SHP-2 facilitated H2O2-mediated interaction between caveolin-1 and CSK and enhanced Src phosphorylation at Tyr 530, leading to subsequent decrease in Src downstream signaling, such as focal adhesion kinase (FAK) and extracellular signal-related kinase (ERK). Our results collectively indicate that SHP-2 alters Src kinase activity by interfering with the complex formation between CSK and phosphotyrosine caveolin-1 in the presence of H2O2, thus functions as a positive regulator in Src signaling under oxidative stress in brain astrocytes.
PLOS ONE | 2011
Hee Ja Kim; Dong Eun Song; Seul Ye Lim; Sung-Hee Lee; Jihee Lee Kang; Sun Jung Lee; Etty N. Benveniste; Youn-Hee Choi
Gastric cancer is one of the most common causes of cancer-related mortality worldwide. Expression of the tumor suppressor, promyelocytic leukemia (PML) protein, is reduced or abolished in gastric carcinomas, in association with an increased level of lymphatic invasion, development of higher pTNM staging, and unfavorable prognosis. Herein, we investigated the relationship between the extent of tumor-infiltrating lymphocytes and the status of PML protein expression in advanced gastric carcinoma. We observed higher numbers of infiltrating T-cells in gastric carcinoma tissues in which PML expression was reduced or abolished, compared to tissues positive for PML. The extent of T-cell migration toward culture supernatants obtained from interferon-gamma (IFN-γ-stimulated gastric carcinoma cell lines was additionally affected by expression of PML in vitro. Interferon-gamma-inducible protein 10 (IP-10/CXCL10) expression was increased in gastric carcinoma tissues displaying reduced PML levels. Moreover, both Pml knockout and knockdown cells displayed enhanced IP-10 mRNA and protein expression in the presence of IFN-γ. PML knockdown increased IFN-γ-mediated Signal Transducer and Activator of Transcription-1 (STAT-1) binding to the IP-10 promoter, resulting in elevated transcription of the IP-10 gene. Conversely, PML IV protein expression suppressed IP-10 promoter activation. Based on these results, we propose that loss of PML protein expression in gastric cancer cells contributes to increased IP-10 transcription via enhancement of STAT-1 activity, which, in turn, promotes lymphocyte trafficking within tumor regions.
Scientific Reports | 2015
Seul Ye Lim; So-Hee Ahn; Hyunju Park; Jungsul Lee; Kyungsun Choi; Chulhee Choi; Ji Ha Choi; Eun-Mi Park; Youn-Hee Choi
Adrenomedullin (ADM), a secretory peptide with multiple functions in physiological to pathological conditions, is upregulated in several human cancers, including brain, breast, colon, prostate, and lung cancer. However, the molecular mechanisms underlying the regulation of ADM expression in cancerous cells are not fully understood. Here, we report that oncostatin M (OSM), a cytokine belonging to the interleukin-6 family, induces ADM expression in astroglioma cells through induction of signal transducer and activator of transcription-3 (STAT-3) phosphorylation, nuclear translocation, and subsequent DNA binding to the ADM promoter. STAT-3 knockdown decreased OSM-mediated expression of ADM, indicating that ADM expression is regulated by STAT-3 in astroglioma cells. Lastly, scratch wound healing assay showed that astroglioma cell migration was significantly enhanced by ADM peptides. These data suggest that aberrant activation of STAT-3, which is observed in malignant brain tumors, may function as one of the key regulators for ADM expression and glioma invasion.
Scientific Reports | 2016
So-Hee Ahn; Hyunju Park; Young Ho Ahn; Sewha Kim; Min-Sun Cho; Jihee Lee Kang; Youn-Hee Choi
Glioblastoma multiforme (GBM) is the most common primary intracranial tumor in adults and has poor prognosis. Diffuse infiltration into normal brain parenchyma, rapid growth, and the presence of necrosis are remarkable hallmarks of GBM. However, the effect of necrotic cells on GBM growth and metastasis is poorly understood at present. In this study, we examined the biological significance of necrotic tissues by exploring the molecular mechanisms underlying the signaling network between necrotic tissues and GBM cells. The migration and invasion of the GBM cell line CRT-MG was significantly enhanced by treatment with necrotic cells, as shown by assays for scratch wound healing and spheroid invasion. Incubation with necrotic cells induced IL-8 secretion in CRT-MG cells in a dose-dependent manner. In human GBM tissues, IL-8 positive cells were mainly distributed in the perinecrotic region, as seen in immunohistochemistry and immunofluorescence analysis. Necrotic cells induced NF-κB and AP-1 activation and their binding to the IL-8 promoter, leading to enhanced IL-8 production and secretion in GBM cells. Our data demonstrate that when GBM cells are exposed to and stimulated by necrotic cells, the migration and invasion of GBM cells are enhanced and facilitated via NF-κB/AP-1 mediated IL-8 upregulation.
Scientific Reports | 2015
Bo Kyung Jeon; Kihwan Kwon; Jihee Lee Kang; Youn-Hee Choi
Mitogen-activated protein kinases (MAPKs) are key signal transducers involved in various cellular events such as growth, proliferation, and differentiation. Previous studies have reported that H2O2 leads to phosphorylation of extracellular signal-regulated kinase (ERK), one of the MAPKs in endothelial cells. The current study shows that H2O2 suppressed ERK1/2 activation and phosphorylation at specific concentrations and times in human umbilical vein endothelial cells but not in immortalized mouse aortic endothelial cells or human astrocytoma cell line CRT-MG. Phosphorylation of other MAPK family members (i.e., p38 and JNK) was not suppressed by H2O2. The decrease in ERK1/2 phosphorylation induced by H2O2 was inversely correlated with the level of phosphorylation of Src tyrosine 530. Using siRNA, it was found that H2O2-induced suppression of ERK1/2 was dependent on Csk. Physiological laminar flow abrogated, but oscillatory flow did not affect, the H2O2-induced suppression of ERK1/2 phosphorylation. In conclusion, H2O2-induced Csk translocation to the plasma membrane leads to phosphorylation of Src at the tyrosine 530 residue resulting in a reduction of ERK1/2 phosphorylation. Physiological laminar flow abrogates this effect of H2O2 by inducing phosphorylation of Src tyrosine 419. These findings broaden our understanding of signal transduction mechanisms in the endothelial cells against oxidative stress.