Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young-Chan Kwon is active.

Publication


Featured researches published by Young-Chan Kwon.


Journal of Virology | 2016

Knockdown of Autophagy Inhibits Infectious Hepatitis C Virus Release by the Exosomal Pathway.

Shubham Shrivastava; Pradip B. Devhare; Nanthiya Sujijantarat; Robert Steele; Young-Chan Kwon; Ranjit Ray; Ratna B. Ray

ABSTRACT Hepatitis C virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma in humans. We showed previously that HCV induces autophagy for viral persistence by preventing the innate immune response. Knockdown of autophagy reduces extracellular HCV release, although the precise mechanism remains unknown. In this study, we observed that knockdown of autophagy genes enhances intracellular HCV RNA and accumulates infectious virus particles in cells. Since HCV release is linked with the exosomal pathway, we examined whether autophagy proteins associate with exosomes in HCV-infected cells. We observed an association between HCV and the exosomal marker CD63 in autophagy knockdown cells. Subsequently, we observed that levels of extracellular infectious HCV were significantly lower in exosomes released from autophagy knockdown cells. To understand the mechanism for reduced extracellular infectious HCV in the exosome, we observed that an interferon (IFN)-stimulated BST-2 gene is upregulated in autophagy knockdown cells and associated with the exosome marker CD63, which may inhibit HCV assembly or release. Taken together, our results suggest a novel mechanism involving autophagy and exosome-mediated HCV release from infected hepatocytes. IMPORTANCE Autophagy plays an important role in HCV pathogenesis. Autophagy suppresses the innate immune response and promotes survival of virus-infected hepatocytes. The present study examined the role of autophagy in secretion of infectious HCV from hepatocytes. Autophagy promoted HCV trafficking from late endosomes to lysosomes, thus providing a link with the exosome. Inhibition of HCV-induced autophagy could be used as a strategy to block exosome-mediated virus transmission.


Scientific Reports | 2015

Interferon-α inducible protein 6 impairs EGFR activation by CD81 and inhibits hepatitis C virus infection

Keith Meyer; Young-Chan Kwon; Shuanghu Liu; Curt H. Hagedorn; Ratna B. Ray; Ranjit Ray

Viral entry requires co-operative interactions of several host cell factors. Interferon (IFN) and the IFN-stimulated genes (ISGs) play a central role in antiviral responses against hepatitis C virus (HCV) infection. We examined the effect of interferon-α inducible protein 6 (IFI6) against HCV infection in human hepatoma cells. HCV RNA level or infectious foci were inhibited significantly by ectopic expression of IFI6. IFI6 impaired CD81 co-localization with claudin-1 (CLDN1) upon HCV infection or CD81 cross-linking by specific antibody. Activation of epidermal growth factor receptor (EGFR), a co-factor involved in CD81/CLDN1 interactions, was reduced in IFI6 expressing cells in response to HCV infection or CD81 cross linking by antibody, but not by treatment with EGF. Taken together, the results from our study support a model where IFI6 inhibits HCV entry by impairing EGFR mediated CD81/CLDN1 interactions. This may be relevant to other virus entry processes employing EGFR.


Journal of Virology | 2015

PROMOTION OF CANCER STEM-LIKE CELL PROPERTIES IN HEPATITIS C VIRUS INFECTED HEPATOCYTES

Young-Chan Kwon; Sandip K. Bose; Robert Steele; Keith Meyer; Adrian M. Di Bisceglie; Ratna B. Ray; Ranjit Ray

ABSTRACT We have previously reported that hepatitis C virus (HCV) infection of primary human hepatocytes (PHH) induces the epithelial mesenchymal transition (EMT) state and extends hepatocyte life span (S. K. Bose, K. Meyer, A. M. Di Bisceglie, R. B. Ray, and R. Ray, J Virol 86:13621–13628, 2012, http://dx.doi.org/10.1128/JVI.02016-12). These hepatocytes displayed sphere formation on ultralow binding plates and survived for more than 12 weeks. The sphere-forming hepatocytes expressed a number of cancer stem-like cell (CSC) markers, including high levels of the stem cell factor receptor c-Kit. The c-Kit receptor is regarded as one of the CSC markers in hepatocellular carcinoma (HCC). Analysis of c-Kit mRNA displayed a significant increase in the liver biopsy specimens of chronically HCV-infected patients. We also found c-Kit is highly expressed in transformed human hepatocytes (THH) infected in vitro with cell culture-grown HCV genotype 2a. Further studies suggested that HCV core protein significantly upregulates c-Kit expression at the transcriptional level. HCV infection of THH led to a significant increase in the number of spheres displayed on ultralow binding plates and in enhanced EMT and CSC markers and tumor growth in immunodeficient mice. The use of imatinib or dasatinib as a c-Kit inhibitor reduced the level of sphere-forming cells in culture. The sphere-forming cells were sensitive to treatment with sorafenib, a multikinase inhibitor, that is used for HCC treatment. Further, stattic, an inhibitor of the Stat3 molecule, induced sphere-forming cell death. A combination of sorafenib and stattic had a significantly stronger effect, leading to cell death. These results suggested that HCV infection potentiates CSC generation, and selected drugs can be targeted to efficiently inhibit cell growth. IMPORTANCE HCV infection may develop into HCC as an end-stage liver disease. We focused on understanding the mechanism for the risk of HCC from chronic HCV infection and identified targets for treatment. HCV-infected primary and transformed human hepatocytes (PHH or THH) generated CSC. HCV-induced spheres were highly sensitive to cell death from sorafenib and stattic treatment. Thus, our study is highly significant for HCV-associated HCC, with the potential for developing a target-specific strategy for improved therapies.


Journal of Immunology | 2016

Distinct CD55 Isoform Synthesis and Inhibition of Complement-Dependent Cytolysis by Hepatitis C Virus

Young-Chan Kwon; Hangeun Kim; Keith Meyer; Adrian M. Di Bisceglie; Ranjit Ray

CD55/DAF, one of the regulators of complement activation, is known to limit excess complement activation on the host cell surface by accelerating the decay of C3 convertase. We reported previously that hepatitis C virus (HCV) infection or virus core protein expression upregulates CD55 expression. CD55 associates with HCV particles, potentially protecting HCV from lysis in circulation. An increase in CD55 on the surface of HCV-infected cells may inhibit complement-mediated cell killing. In this study, we show that Abs against cancer cell surface proteins induce complement-dependent cytolysis or Ab-dependent cell-mediated cytotoxicity of immortalized human hepatocytes in the presence of CD55-blocking Ab. CD55 has a secreted isoform (sCD55) that is generated by alternative splicing. We observed that sCD55 is induced in HCV-infected or HCV replicon–harboring cells, as well as in liver biopsy samples from chronically HCV-infected patients. Conditioned medium from HCV-infected hepatoma cells (Huh7.5 cells) or immortalized human hepatocytes inhibited C3 convertase activity and complement-dependent cytolysis of sheep blood erythrocytes. Chronically HCV-infected patient sera inhibited C3 convertase activity, further implicating HCV-specific impairment of complement function in infected humans. CD55-blocking Ab inhibited erythrocyte lysis by conditioned medium, suggesting that CD55/sCD55 impairs convertase activity. Together, our data show that HCV infection induces sCD55 expression in HCV-infected cell culture–conditioned medium and inhibits C3 convertase activity. This may have implications for modulating complement-mediated immune function in the microenvironment and on HCV-harboring cells.


Hepatology | 2018

Hepatitis C virus E2 envelope glycoprotein induces an immunoregulatory phenotype in macrophages

Young-Chan Kwon; Keith Meyer; Guangyong Peng; Soumya Chatterjee; Daniel F. Hoft; Ranjit Ray

A comprehensive strategy to control hepatitis C virus (HCV) infection needs a vaccine. Our phase I study with recombinant HCV E1/E2 envelope glycoprotein (EnvGPs) as a candidate vaccine did not induce a strong immune response in volunteers. We analyzed the interactions of HCV EnvGPs with human monocyte‐derived macrophages as antigen‐presenting cells. HCV E2 induced immune regulatory cytokine interleukin (IL)‐10 and soluble CD163 (sCD163) protein expression in macrophages from 7 of 9 blood donors tested. Furthermore, HCV E2 enhanced Stat3 and suppressed Stat1 activation, reflecting macrophage polarization toward M2 phenotype. E2‐associated macrophage polarization appeared to be dependent of its interaction with CD81 leading endothelial growth factor receptor (EGFR) activation. Additionally, E2 suppressed the expression of C3 complement, similar to HCV‐exposed dendritic cells (DCs), implying potential impairment of immune cell priming. Conclusion: Our results suggest that E2 EnvGP may not be an ideal candidate for HCV vaccine development, and discrete domains within E2 may prove to be more capable of elliciting a protective immune response. (Hepatology 2018).


Scientific Reports | 2017

N-terminal gelsolin fragment potentiates TRAIL mediated death in resistant hepatoma cells

Keith Meyer; Young-Chan Kwon; Ratna B. Ray; Ranjit Ray

TNF-α related apoptosis-inducing ligand (TRAIL) selectively kills tumor cells, without damaging normal cells. TRAIL receptors facilitate induction of apoptosis for selective elimination of malignant cells. However, some cancer cells have developed resistances to TRAIL which limits anticancer potential. Gelsolin, a multifunctional actin-binding protein, mediates cell death involving the TRAIL receptors in the hepatic stellate cell line, LX2. Here, we have shown that conditioned medium (CM) containing gelsolin fragments or an N-terminal gelsolin fragment (amino acid residues 1–70) in the presence of TRAIL impairs cell viability of TRAIL resistant transformed human hepatocytes (HepG2). Cell growth regulation by CM and TRAIL was associated with the modulation of p53/Mdm2, Erk and Akt phosphorylation status. The use of N-terminal gelsolin peptide1–70 alone or in combination with TRAIL, induced inhibition of Akt phosphorylation and key survival factors, Mdm2 and Survivin. Treatment of cells with an Akt activator SC79 or p53 siRNA reduced the effects of the N-terminal gelsolin fragment and TRAIL. Together, our study suggests that the N-terminal gelsolin fragment enhances TRAIL-induced loss of cell viability by inhibiting phosphorylation of Akt and promoting p53 function, effecting cell survival.


Excli Journal | 2014

Hepatitis C virus infection: establishment of chronicity and liver disease progression.

Young-Chan Kwon; Ratna B. Ray; Ranjit Ray


Scientific Reports | 2018

Author Correction: N-terminal gelsolin fragment potentiates TRAIL mediated death in resistant hepatoma cells

Keith Meyer; Young-Chan Kwon; Ratna B. Ray; Ranjit Ray


Journal of Virology | 2017

HEPATITIS C VIRUS CORE PROTEIN MODULATES ENDOGLIN (CD105) SIGNALING PATHWAY FOR LIVER PATHOGENESIS.

Young-Chan Kwon; Reina Sasaki; Keith Meyer; Ranjit Ray


Archive | 2014

Hepatitis C virus infection

Young-Chan Kwon; Ratna B. Ray; Ranjit Ray

Collaboration


Dive into the Young-Chan Kwon's collaboration.

Top Co-Authors

Avatar

Ranjit Ray

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar

Keith Meyer

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar

Ratna B. Ray

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hangeun Kim

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge