Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young Jun Jeon is active.

Publication


Featured researches published by Young Jun Jeon.


Nature Medicine | 2012

EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers

Michela Garofalo; Giulia Romano; Gianpiero Di Leva; Gerard J. Nuovo; Young Jun Jeon; Apollinaire Ngankeu; Jin Sun; Francesca Lovat; Hansjuerg Alder; Gerolama Condorelli; Jeffrey A. Engelman; Mayumi Ono; Jin Kyung Rho; Luciano Cascione; Stefano Volinia; Kenneth P. Nephew; Carlo M. Croce

The involvement of the MET oncogene in de novo and acquired resistance of non-small cell lung cancers (NSCLC) to tyrosine kinase inhibitors (TKIs) has been reported, but the precise mechanism by which MET overexpression contributes to TKI-resistant NSCLC remains unclear. MicroRNAs (miRNAs) negatively regulate gene expression and their dysregulation has been implicated in tumorigenesis. To understand the role of microRNAs in TKI-resistant NSCLC, we examined TK receptor-mediated microRNA changes. Here we report that miR-30b/c and miR-221/222, modulated by both EGF and MET receptors, and miR-103, -203, controlled only by MET, play important roles in gefitinib-induced apoptosis and epithelial-mesenchymal transition (EMT) of NSCLC cells, in vitro and in vivo, by inhibiting the expression of Bim, APAF-1, PKC-ε and SRC genes. The finding suggests that modulation of specific microRNAs may provide a therapeutic approach for future treatment of NSCLC.


Nature Medicine | 2014

Erratum: EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers (Nat. Med. (2012) 18 (74-82))

Michela Garofalo; Giulia Romano; Gianpiero Di Leva; Gerard J. Nuovo; Young Jun Jeon; Apollinaire Ngankeu; Jin Sun; Francesca Lovat; Hansjuerg Alder; Gerolama Condorelli; Jeffrey A. Engelman; Mayumi Ono; Jin Kyung Rho; Luciano Cascione; Stefano Volinia; Kenneth P. Nephew; Carlo M. Croce

The involvement of the MET oncogene in de novo and acquired resistance of non-small cell lung cancers (NSCLC) to tyrosine kinase inhibitors (TKIs) has been reported, but the precise mechanism by which MET overexpression contributes to TKI-resistant NSCLC remains unclear. MicroRNAs (miRNAs) negatively regulate gene expression and their dysregulation has been implicated in tumorigenesis. To understand the role of microRNAs in TKI-resistant NSCLC, we examined TK receptor-mediated microRNA changes. Here we report that miR-30b/c and miR-221/222, modulated by both EGF and MET receptors, and miR-103, -203, controlled only by MET, play important roles in gefitinib-induced apoptosis and epithelial-mesenchymal transition (EMT) of NSCLC cells, in vitro and in vivo, by inhibiting the expression of Bim, APAF-1, PKC-ε and SRC genes. The finding suggests that modulation of specific microRNAs may provide a therapeutic approach for future treatment of NSCLC.


Proceedings of the National Academy of Sciences of the United States of America | 2012

MicroRNAs/TP53 feedback circuitry in glioblastoma multiforme

Sung-Suk Suh; Ji Young Yoo; Gerard J. Nuovo; Young Jun Jeon; Seokho Kim; Tae Jin Lee; Taewan Kim; Arianna Bakàcs; Hansjuerg Alder; Balveen Kaur; Rami I. Aqeilan; Flavia Pichiorri; Carlo M. Croce

MicroRNAs (miRNAs) are increasingly implicated in regulating cancer initiation and progression. In this study, two miRNAs, miR-25 and -32, are identified as p53-repressed miRNAs by p53-dependent negative regulation of their transcriptional regulators, E2F1 and MYC. However, miR-25 and -32 result in p53 accumulation by directly targeting Mdm2 and TSC1, which are negative regulators of p53 and the mTOR (mammalian target of rapamycin) pathway, respectively, leading to inhibition of cellular proliferation through cell cycle arrest. Thus, there is a recurrent autoregulatory circuit involving expression of p53, E2F1, and MYC to regulate the expression of miR-25 and -32, which are miRNAs that, in turn, control p53 accumulation. Significantly, overexpression of transfected miR-25 and -32 in glioblastoma multiforme cells inhibited growth of the glioblastoma multiforme cells in mouse brain in vivo. The results define miR-25 and -32 as positive regulators of p53, underscoring their role in tumorigenesis in glioblastoma.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5

Taewan Kim; Ri Cui; Young Jun Jeon; Ji Hoon Lee; Ju Hee Lee; Hosung Sim; Jong Kook Park; Paolo Fadda; Esmerina Tili; Hiroshi Nakanishi; Man Il Huh; Sung Hak Kim; Ju Hwan Cho; Bong Hwan Sung; Yong Peng; Tae Jin Lee; Zhenghua Luo; Hui Lung Sun; Huijun Wei; Hansjuerg Alder; Jeong Su Oh; Kang Sup Shim; Sang Bong Ko; Carlo M. Croce

Significance Many cancer-associated variants have been found in the 8q24.21 region harboring enhancer activity. However, the functional mechanism of the variants is not clear due to the lack of protein-coding genes in the region and no significant correlation with the nearest oncogene MYC. We identified long noncoding RNAs (lncRNAs) named cancer-associated region long noncoding RNAs (CARLos) in the 8q24.21 region. Interestingly, we found that the cancer-associated variant rs6983267 regulating the enhancer activity is significantly associated with the expression of one of the lncRNAs CARLo-5 and that CARLo-5 has an oncogenic function. By showing direct interaction between the enhancer region and active regulatory region of the CARLo-5 promoter, we provide a regulatory mechanism of cancer susceptibility caused by the cancer-associated variants. The mechanism by which the 8q24 MYC enhancer region, including cancer-associated variant rs6983267, increases cancer risk is unknown due to the lack of protein-coding genes at 8q24.21. Here we report the identification of long noncoding RNAs named cancer-associated region long noncoding RNAs (CARLos) in the 8q24 region. The expression of one of the long noncoding RNAs, CARLo-5, is significantly correlated with the rs6983267 allele associated with increased cancer susceptibility. We also found the MYC enhancer region physically interacts with the active regulatory region of the CARLo-5 promoter, suggesting long-range interaction of MYC enhancer with the CARLo-5 promoter regulates CARLo-5 expression. Finally, we demonstrate that CARLo-5 has a function in cell-cycle regulation and tumor development. Overall, our data provide a key of the mystery of the 8q24 gene desert.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer

Yong Peng; Yuntao Dai; Charles L. Hitchcock; Xiaojuan Yang; Edmund S. Kassis; Lunxu Liu; Zhenghua Luo; Hui Lung Sun; Ri Cui; Huijun Wei; Taewan Kim; Tae Jin Lee; Young Jun Jeon; Gerard J. Nuovo; Stefano Volinia; Qianchuan He; Jianhua Yu; Patrick Nana-Sinkam; Carlo M. Croce

MicroRNAs (miRNAs) are small 19- to 24-nt noncoding RNAs that have the capacity to regulate fundamental biological processes essential for cancer initiation and progression. In cancer, miRNAs may function as oncogenes or tumor suppressors. Here, we conducted global profiling for miRNAs in a cohort of stage 1 nonsmall cell lung cancers (n = 81) and determined that miR-486 was the most down-regulated miRNA in tumors compared with adjacent uninvolved lung tissues, suggesting that miR-486 loss may be important in lung cancer development. We report that miR-486 directly targets components of insulin growth factor (IGF) signaling including insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and phosphoinositide-3-kinase, regulatory subunit 1 (alpha) (PIK3R1, or p85a) and functions as a potent tumor suppressor of lung cancer both in vitro and in vivo. Our findings support the role for miR-486 loss in lung cancer and suggest a potential biological link to p53.


PLOS ONE | 2013

MiR-34a/c-Dependent PDGFR-α/β Downregulation Inhibits Tumorigenesis and Enhances TRAIL-Induced Apoptosis in Lung Cancer.

Michela Garofalo; Young Jun Jeon; Gerard J. Nuovo; Justin Middleton; Paola Secchiero; Pooja Joshi; Hansjuerg Alder; Natalya Nazaryan; Gianpiero Di Leva; Giulia Romano; Melissa Crawford; Patrick Nana-Sinkam; Carlo M. Croce

Lung cancer is the leading cause of cancer mortality in the world today. Although some advances in lung cancer therapy have been made, patient survival is still poor. MicroRNAs (miRNAs) can act as oncogenes or tumor-suppressor genes in human malignancy. The miR-34 family consists of tumor-suppressive miRNAs, and its reduced expression has been reported in various cancers, including non-small cell lung cancer (NSCLC). In this study, we found that miR-34a and miR-34c target platelet-derived growth factor receptor alpha and beta (PDGFR-α and PDGFR-β), cell surface tyrosine kinase receptors that induce proliferation, migration and invasion in cancer. MiR-34a and miR-34c were downregulated in lung tumors compared to normal tissues. Moreover, we identified an inverse correlation between PDGFR-α/β and miR-34a/c expression in lung tumor samples. Finally, miR-34a/c overexpression or downregulation of PDGFR-α/β by siRNAs, strongly augmented the response to TNF-related apoptosis inducing ligand (TRAIL) while reducing migratory and invasive capacity of NSCLC cells.


Nature Cell Biology | 2007

AK2 activates a novel apoptotic pathway through formation of a complex with FADD and caspase-10

Ho June Lee; Jong Ok Pyo; Yumin Oh; Hyo Jin Kim; Se Hoon Hong; Young Jun Jeon; Hyun-Joo Kim; Dong Hyung Cho; Ha Na Woo; Sungmin Song; Jung Hyun Nam; Hyo Joon Kim; Key Sun Kim; Yong-Keun Jung

Mitochondrial proteins function as essential regulators in apoptosis. Here, we show that mitochondrial adenylate kinase 2 (AK2) mediates mitochondrial apoptosis through the formation of an AK2–FADD–caspase-10 (AFAC10) complex. Downregulation of AK2 attenuates etoposide- or staurosporine-induced apoptosis in human cells, but not that induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL) or Fas ligand (FasL). During intrinsic apoptosis, AK2 translocates to the cytoplasm, whereas this event is diminished in Apaf-1 knockdown cells and prevented by Bcl-2 or Bcl-XL. Addition of purified AK2 protein to cell extracts first induces activation of caspase-10 via FADD and subsequently caspase-3 activation, but does not affect caspase-8. AFAC10 complexes are detected in cells undergoing intrinsic cell death and AK2 promotes the association of caspase-10 with FADD. In contrast, AFAC10 complexes are not detected in several etoposide-resistant human tumour cell lines. Taken together, these results suggest that, acting in concert with FADD and caspase-10, AK2 mediates a novel intrinsic apoptotic pathway that may be involved in tumorigenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2015

MicroRNA-224 promotes tumor progression in nonsmall cell lung cancer

Ri Cui; Wei Meng; Hui Lung Sun; Taewan Kim; Zhenqing Ye; Matteo Fassan; Young Jun Jeon; Bin Li; Caterina Vicentini; Yong Peng; Tae Jin Lee; Zhenghua Luo; Lan Liu; Dongyuan Xu; Esmerina Tili; Victor X. Jin; Justin Middleton; Arnab Chakravarti; Tim Lautenschlaeger; Carlo M. Croce

Significance Aberrant microRNA (miRNA) expression is involved in tumorigenesis, and miR-224 was observed to be up-regulated in certain tumor types. However, the role of miR-224 in the pathogenesis of lung cancer remains poorly understood. Here, we comprehensively analyzed and revealed mechanisms of miR-224 up-regulation and its oncogenic role in nonsmall cell lung cancer (NSCLC). We showed that miR-224 promotes cellular migratory, invasive, and proliferative capacity and tumor growth both in vitro and in vivo. Furthermore, we identified TNFα-induced protein 1 and SMAD4 as targets of miR-224. In addition, up-regulated miR-224 expression in NSCLC is partially controlled by its promoter region’s hypomethylation and activated ERK signaling. Our finding suggests that targeting miR-224 might be a promising therapeutic strategy in the treatment of NSCLC. Lung cancer is the leading cause of cancer-related deaths worldwide. Despite advancements and improvements in surgical and medical treatments, the survival rate of lung cancer patients remains frustratingly poor. Local control for early-stage nonsmall cell lung cancer (NSCLC) has dramatically improved over the last decades for both operable and inoperable patients. However, the molecular mechanisms of NSCLC invasion leading to regional and distant disease spread remain poorly understood. Here, we identify microRNA-224 (miR-224) to be significantly up-regulated in NSCLC tissues, particularly in resected NSCLC metastasis. Increased miR-224 expression promotes cell migration, invasion, and proliferation by directly targeting the tumor suppressors TNFα-induced protein 1 (TNFAIP1) and SMAD4. In concordance with in vitro studies, mouse xenograft studies validated that miR-224 functions as a potent oncogenic miRNA in NSCLC in vivo. Moreover, we found promoter hypomethylation and activated ERK signaling to be involved in the regulation of miR-224 expression in NSCLC. Up-regulated miR-224, thus, facilitates tumor progression by shifting the equilibrium of the partially antagonist functions of SMAD4 and TNFAIP1 toward enhanced invasion and growth in NSCLC. Our findings indicate that targeting miR-224 could be effective in the treatment of certain lung cancer patients.


Journal of the National Cancer Institute | 2015

Role of MYC-Regulated Long Noncoding RNAs in Cell Cycle Regulation and Tumorigenesis

Taewan Kim; Young Jun Jeon; Ri Cui; Ji Hoon Lee; Yong Peng; Sung Hak Kim; Esmerina Tili; Hansjuerg Alder; Carlo M. Croce

BACKGROUND The functions of long noncoding RNAs (lncRNAs) have been identified in several cancers, but the roles of lncRNAs in colorectal cancer (CRC) are less well understood. The transcription factor MYC is known to regulate lncRNAs and has been implicated in cancer cell proliferation and tumorigenesis. METHODS CRC cells and tissues were profiled to identify lncRNAs differentially expressed in CRC, from which we further selected MYC-regulated lncRNAs. We used luciferase promoter assay, ChIP, RNA pull-down assay, deletion mapping assay, LC-MS/MS and RNA immunoprecipitation to determine the mechanisms of MYC regulation of lncRNAs. Moreover, soft agar assay and in vivo xenograft experiments (four athymic nude mice per group) provided evidence of MYC-regulated lncRNAs in cancer cell transformation and tumorigenesis. The Kaplan-Meier method was used for survival analyses. All statistical tests were two-sided. RESULTS We identified lncRNAs differentially expressed in CRC (P < .05, greater than two-fold) and verified four lncRNAs upregulated and two downregulated in CRC cells and tissues. We further identified MYC-regulated lncRNAs, named MYCLos. The MYC-regulated MYCLos may function in cell proliferation and cell cycle by regulating MYC target genes such as CDKN1A (p21) and CDKN2B (p15), suggesting new regulatory mechanisms of MYC-repressed target genes through lncRNAs. RNA binding proteins including HuR and hnRNPK are involved in the function of MYCLos by interacting with MYCLo-1 and MYCLo-2, respectively. Knockdown experiments also showed that MYCLo-2, differentially expressed not only in CRC but also in prostate cancer, has a role in cancer transformation and tumorigenesis. CONCLUSIONS Our results provide novel regulatory mechanisms in MYC function through lncRNAs and new potential lncRNA targets of CRC.


Proceedings of the National Academy of Sciences of the United States of America | 2015

MicroRNA-148a reduces tumorigenesis and increases TRAIL-induced apoptosis in NSCLC

Pooja Joshi; Young Jun Jeon; Alessandro Laganà; Justin Middleton; Paola Secchiero; Michela Garofalo; Carlo M. Croce

Significance Nonsmall cell lung cancer (NSCLC) is one of the deadliest cancers in the world. Although a very small subset of NSCLC patients respond to TNF-related apoptosis-inducing ligand (TRAIL), resistance remains a major hindrance to successful treatment. miRNAs are small noncoding RNAs of ∼24 nt that negatively regulate gene expression. Here, we show that miR-148a is significantly down-regulated in cells with acquired TRAIL resistance. Furthermore, we have determined that miR-148a can sensitize cells to TRAIL and inhibit tumorigenesis by targeting matrix metalloproteinase 15 and Rho-associated kinase 1 protein expression. Thus, miR-148a could be a promising prognostic and therapeutic tool in NSCLC treatment. Nonsmall cell lung cancer (NSCLC) is one of the leading causes of death worldwide. TNF-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis in malignant cells without inducing significant toxicity in normal cells. However, several carcinomas, including lung cancer, remain resistant to TRAIL. MicroRNAs (miRNAs) are small noncoding RNAs of ∼24 nt that block mRNA translation and/or negatively regulate its stability. They are often aberrantly expressed in cancer and have been implicated in increasing susceptibility or resistance to TRAIL-induced apoptosis by inhibiting key functional proteins. Here we show that miR-148a is down-regulated in cells with acquired TRAIL-resistance compared with TRAIL-sensitive cells. Enforced expression of miR-148a sensitized cells to TRAIL and reduced lung tumorigenesis in vitro and in vivo through the down-modulation of matrix metalloproteinase 15 (MMP15) and Rho-associated kinase 1 (ROCK1). These findings suggest that miR-148a acts as a tumor suppressor and might have therapeutic application in the treatment of NSCLC.

Collaboration


Dive into the Young Jun Jeon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ri Cui

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Lung Sun

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge