Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Young Kwon.
Monthly Weather Review | 2014
Vijay Tallapragada; Chanh Kieu; Young Kwon; Samuel Trahan; Qingfu Liu; Zhan Zhang; In-Hyuk Kwon
AbstractIn this work, a high-resolution triple-nested implementation of the National Centers for Environmental Prediction (NCEP) operational Hurricane Weather Research and Forecasting Model (HWRF) for the 2012 hurricane season is evaluated. Statistics of retrospective experiments for the 2010–11 hurricane seasons show that the new configuration demonstrates significant improvement compared to the 2011 operational HWRF in terms of storm track, intensity, size, dynamical constraints between mass and wind field, and initial vortex imbalance. Specifically, the 5-day track and intensify forecast errors are improved by about 19% and 7% for the North Atlantic basin, and by 9% and 30% for the eastern Pacific basin, respectively. Verifications of storm size in terms of wind radii at 34-, 50-, and 64-kt (17.5, 25.7, and 32.9 m s−1) thresholds at different quadrants show dramatic improvement with most of the overestimation of the storm size in previous operational HWRF versions removed at all forecast times. In addi...
Monthly Weather Review | 2008
Jeffrey S. Gall; William M. Frank; Young Kwon
Abstract Under high-wind conditions, breaking waves and whitecaps eject large numbers of sea spray droplets into the atmosphere. The spray droplets originate with the same temperature and salinity as the ocean surface and thus increase the effective surface area of the ocean in contact with the atmosphere. As a result, the spray alters the total sensible and latent heat fluxes in the near-surface layer. The spray drops in the near-surface layer also result in horizontal and vertical spray-drag effects. The mass of the spray introduces an additional drag in the vertical momentum equation and tends to stabilize the lower boundary layer (BL). An initially axisymmetric control hurricane was created from the output of a real-data simulation of Hurricane Floyd (1999) using the nonhydrostatic fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5, version 3.4). The subsequent simulations, however, are not axisymmetric because the mass, wind, and spray fields ...
Bulletin of the American Meteorological Society | 2015
Ligia Bernardet; Vijay Tallapragada; S. Bao; Samuel Trahan; Young Kwon; Qingfu Liu; Mingjing Tong; Mrinal K. Biswas; T. Brown; D. Stark; L. Carson; Richard M. Yablonsky; E. Uhlhorn; S. Gopalakrishnan; Xuejin Zhang; Timothy Marchok; B. Kuo; R. Gall
AbstractThe Hurricane Weather Research and Forecasting Model (HWRF) is an operational model used to provide numerical guidance in support of tropical cyclone forecasting at the National Hurricane Center. HWRF is a complex multicomponent system, consisting of the Weather Research and Forecasting (WRF) atmospheric model coupled to the Princeton Ocean Model for Tropical Cyclones (POM-TC), a sophisticated initialization package including a data assimilation system and a set of postprocessing and vortex tracking tools. HWRF’s development is centralized at the Environmental Modeling Center of NOAA’s National Weather Service, but it incorporates contributions from a variety of scientists spread out over several governmental laboratories and academic institutions. This distributed development scenario poses significant challenges: a large number of scientists need to learn how to use the model, operational and research codes need to stay synchronized to avoid divergence, and promising new capabilities need to be ...
Monthly Weather Review | 2017
Young Kwon; Song-You Hong
AbstractA method that enables a mass-flux cumulus parameterization scheme (CPS) to work seamlessly in various model grids across CPS gray-zone resolutions is proposed. The convective cloud-base mass flux, convective inhibition, and convective detrainment in the simplified Arakawa–Schubert (SAS) scheme are modified to be functions of the convective updraft fraction. The combination of two updraft fractions is used to modulate the cloud-base mass flux; the first one depends on the horizontal grid space and the other is a function of the grid-scale and convective vertical velocity. The convective inhibition and detrainment of hydrometeors are also modified to be a function of the grid-size-dependent convective updraft fraction.A set of sensitivity experiments with the Weather Research and Forecasting (WRF) Model is conducted for a heavy rainfall case over South Korea. The results show that the revised SAS CPS outperforms the original SAS. At 3 and 1 km, the precipitation core over South Korea is well reprodu...
Asia-pacific Journal of Atmospheric Sciences | 2018
Song-You Hong; Young Kwon; Tae-Hun Kim; Jung-Eun Kim; Suk-Jin Choi; In-Hyuk Kwon; Junghan Kim; Eun-Hee Lee; Rae-Seol Park; Dong-Il Kim
The Korea Institute of Atmospheric Prediction Systems (KIAPS) began a national project to develop a new global atmospheric model system in 2011. The ultimate goal of this 9-year project is to replace the current operational model at the Korea Meteorological Administration (KMA), which was adopted from the United Kingdom’s Meteorological Office’s unified model (UM) in 2010. The 12-km Korean Integrated Model (KIM) system, consisting of a spectral-element non-hydrostatic dynamical core on a cubed sphere grid and a state-of-the-art physics parameterization package, has been launched in a real-time forecast framework, with initial conditions obtained via the advanced hybrid four-dimensional ensemble variational data assimilation (4DEnVar) over its native grid. A development strategy for KIM and the evolution of its performance in medium-range forecasts toward a world-class global forecast system are described. Outstanding issues in KIM 3.1 as of February 2018 are discussed, along with a future plan for operational deployment in 2020.
Weather and Forecasting | 2017
Jongil Han; Weiguo Wang; Young Kwon; Song-You Hong; Vijay Tallapragada; Fanglin Yang
AbstractThe current operational NCEP Global Forecast System (GFS) cumulus convection schemes are updated with a scale-aware parameterization where the cloud mass flux decreases with increasing grid resolution. The ratio of advective time to convective turnover time is also taken into account for the scale-aware parameterization. In addition, the present deep cumulus convection closure using the quasi-equilibrium assumption is no longer used for grid sizes smaller than a threshold value. For the shallow cumulus convection scheme, the cloud-base mass flux is modified to be given by a function of mean updraft velocity. A simple aerosol-aware parameterization where rain conversion in the convective updraft is modified by aerosol number concentration is also included in the update. Along with the scale- and aerosol-aware parameterizations, more changes are made to the schemes. The cloud-base mass-flux computation in the deep convection scheme is modified to use convective turnover time as the convective adjust...
Archive | 2018
Mrinal K. Biswas; Ligia Bernardet; Sergio Abarca; Isaac Ginis; Evelyn Grell; Evan Kalina; Young Kwon; Bin Liu; Qingfu Liu; Timothy Marchok; Avichal Mehra; Kathryn Newman; Dmitry Sheinin; Jason A. Sippel; Subashini Subramanian; Vijay Tallapragada; Biju Thomas; Mingjing Tong; Samuel Trahan; Weiguo Wang; Richard M. Yablonsky; Xuejin Zhang; Zhan Zhang
1NOAA/NWS/NCEP Environmental Modeling Center, College Park, MD, 2NOAA Earth System Research Laboratory, CIRES / University of Colorado, and Developmental Testbed Center, Boulder, CO, 3National Center for Atmospheric Research and Developmental Testbed Center, Boulder, CO, 4University of Rhode Island, 5IMSG Inc, 6Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 7Hurricane Research Division, AOML, Miami, FL,and RSMAS, CIMAS, University of Miami, Miami, FL
Asia-pacific Journal of Atmospheric Sciences | 2018
Eun-Hee Lee; Eunjung Lee; Rae-Seol Park; Young Kwon; Song-You Hong
The impact of enhanced turbulent mixing induced by radiative cooling at the top of the stratocumulus-topped boundary layer (STBL) on numerical weather prediction is examined. An additional term involving top-down turbulent mixing via in-cloud radiative cooling is applied to the Yonsei University (YSU) planetary boundary layer (PBL) parameterization scheme using a top-down diffusivity profile and cloud-top entrainment. The modified scheme is evaluated in an advection fog case over the Yellow Sea of Korea using the Weather Research and Forecasting (WRF) model and in global medium-range forecasts using the Global/Regional Integrated Model system (GRIMs). In the fog case simulation, consideration of the additional top-down mixing parameterization in the YSU PBL simulates less formation and more rapid dispersion of the fog. As a result, the modified scheme simulates a drier and warmer boundary layer and a moister and cooler layer above the PBL. The modified algorithm also improves surface temperature prediction over the Yellow Sea accompanying early dissipation of the fog. In the global medium-range forecast experiment, the modified scheme simulates overall enhanced PBL mixing over the STBL in the tropics and subtropical ocean, showing drier and warmer regions near the surface and moister and cooler regions above the PBL, resulting in prediction of reduced low level cloud amount and increased downward shortwave radiation at the surface. The modified scheme appears to improve systematic bias in temperature and humidity in the lower troposphere compared to the control simulation.
Journal of the Atmospheric Sciences | 2005
Young Kwon; William M. Frank
Archive | 2016
Vijay Tallapragada; Ligia Bernardet; Mrinal K. Biswas; Isaac Ginis; Young Kwon; Qingfu Liu; Tim Marchok; Dmitry Sheinin; Biju Thomas; Mingjing Tong; Samuel Trahan; Weiguo Wong; Richard M. Yablonsky; Xuejin Zhang