Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young R. Kim is active.

Publication


Featured researches published by Young R. Kim.


NeuroImage | 2008

Spatio-temporal characteristics of low-frequency BOLD signal fluctuations in isoflurane-anesthetized rat brain

Sridhar S. Kannurpatti; Bharat B. Biswal; Young R. Kim; Bruce R. Rosen

We studied the spatio-temporal characteristics of the resting state low-frequency fluctuations in fMRI-BOLD signal in isoflurane-anesthetized rats. fMRI-BOLD measurements at 9.4 T were made during normal and exsanguinated condition previously known to alter cerebral blood flow (CBF) fluctuations in anesthetized rats. fMRI signal time series were low pass filtered and studied by spectral analysis. During normal conditions, baseline mean arterial pressure (MAP) was 110+/-10 mm Hg and low-frequency fluctuations in BOLD signal were observed in the frequency range of 0.01 to 0.125 Hz. Following blood withdrawal (exsanguination), MAP decreased to 68+/-7 mm Hg, resulting in an increase in the amplitude of the low-frequency fluctuations in BOLD signal time series and an increase in power at several frequencies between 0.01 and 0.125 Hz. Spatially, the BOLD fluctuations were confined to the cortex and thalamus spanning both hemispheres with sparse presence in the caudate putamen and hippocampus during both normal and exsanguinated states. Spatial distribution of the low-frequency fluctuations in BOLD signal, from cross-correlation analysis, indicates substantial inter-hemispheric synchrony similar to that observed in the conscious human brain. The behavior of the resting state BOLD signal fluctuations similar to CBF fluctuations during exsanguination indicates a myogenic dependence. Also, a high inter-hemispheric synchrony combined with different phase characteristics of the low-frequency BOLD fluctuations particularly in the hippocampus relative to the cortex emphasizes distinct functional networks.


International Journal of Cancer | 2006

In vivo imaging of tumor response to therapy using a dual-modality imaging strategy

Zdravka Medarova; Wellington Pham; Young R. Kim; Guangping Dai; Anna Moore

In vivo assessment of the outcome of cancer therapy is hampered by the paucity of imaging probes that target tumors specifically and noninvasively. The importance of such probes increases with the continuous development of chemotherapeutics and the necessity to evaluate their effectiveness in a clinical setting. We have recently reported on a dual‐modality imaging probe specifically targeting the underglycosylated mucin‐1 tumor‐specific antigen (uMUC‐1), which is one of the early hallmarks of tumorigenesis in a wide variety of tumors. This probe consists of crosslinked superparamagnetic iron oxide nanoparticles (CLIO) for MR imaging, modified with Cy5.5 dye (for near infrared optical fluorescence imaging (NIRF)), and has peptides (EPPT), specifically recognizing uMUC‐1, attached to the nanoparticles dextran coat. In the present study, we demonstrated that this probe could not only detect orthotopically implanted preclinical models of adenocarcinomas but could also track tumor response to chemotherapy in vivo in real time. Considering the high cost associated with the development and testing of new cancer therapeutics and the need for accurate, noninvasive assessment of their effectiveness, we believe that the developed probe represents a valuable research tool relevant to clinical discovery.


The Journal of Neuroscience | 2011

Enhanced Subcortical Spreading Depression in Familial Hemiplegic Migraine Type 1 Mutant Mice

Katharina Eikermann-Haerter; Izumi Yuzawa; Tao Qin; Yumei Wang; Kwangyeol Baek; Young R. Kim; Ulrike Hoffmann; Ergin Dilekoz; Christian Waeber; Michel D. Ferrari; Arn M. J. M. van den Maagdenberg; Michael A. Moskowitz; Cenk Ayata

Familial hemiplegic migraine type 1, a monogenic migraine variant with aura, is linked to gain-of-function mutations in the CACNA1A gene encoding CaV2.1 channels. The S218L mutation causes severe channel dysfunction, and paroxysmal migraine attacks can be accompanied by seizures, coma, and hemiplegia; patients expressing the R192Q mutation exhibit hemiplegia only. Familial hemiplegic migraine knock-in mice expressing the S218L or R192Q mutation are highly susceptible to cortical spreading depression, the electrophysiological surrogate for migraine aura, and develop severe and prolonged motor deficits after spreading depression. The S218L mutants also develop coma and seizures and sometimes die. To investigate underlying mechanisms for these symptoms, we used multielectrode electrophysiological recordings, diffusion-weighted magnetic resonance imaging, and c-fos immunohistochemistry to trace spreading depression propagation into subcortical structures. We showed that unlike the wild type, cortical spreading depression readily propagated into subcortical structures in both familial hemiplegic migraine type 1 mutants. Whereas the facilitated subcortical spread appeared limited to the striatum in R192Q, hippocampal and thalamic spread was detected in the S218L mutants with an allele-dosage effect. Both strains exhibited increased susceptibility to subcortical spreading depression and reverberating spreading depression waves. Altogether, these data show that spreading depression propagates between cortex, basal ganglia, diencephalon, and hippocampus in genetically susceptible brains, which could explain the prolonged hemiplegia, coma, and seizure phenotype in this variant of migraine with aura.


Magnetic Resonance in Medicine | 2004

Exogenous contrast agent improves sensitivity of gradient-echo functional magnetic resonance imaging at 9.4 T.

Joseph B. Mandeville; Bruce G. Jenkins; Yin-Ching I. Chen; Ji-Kyung Choi; Young R. Kim; Deniz Belen; Christina H. Liu; Barry E. Kosofsky; John J. A. Marota

Relative to common clinical magnetic field strengths, higher fields benefit functional brain imaging both by providing additional signal for high‐resolution applications and by improving the sensitivity of endogenous contrast due to the blood oxygen level dependent (BOLD) mechanism, which has limited detection power at low magnetic fields relative to the use of exogenous contrast agent. This study evaluates the utility of iron oxide contrast agent for gradient echo functional MRI at 9.4 T in rodents using cocaine and methylphenidate as stimuli. Relative to the BOLD method, the use of high iron doses and short echo times provided a roughly twofold global increase in functional sensitivity, while also suppressing large vessel signal and reducing susceptibility artifacts. Furthermore, MRI measurements of the functional percentage change in cerebral blood volume (CBV) showed excellent agreement with results obtained at much lower magnetic field strengths, demonstrating that MRI estimates of this quantity are roughly independent of magnetic field when appropriate techniques are employed. The derived field dependencies for relative sensitivity and MRI estimates of the percentage change in CBV suggest that the benefits provided by exogenous agents will persist even at much higher magnetic fields than 9.4 T. Magn Reson Med 52:1272–1281, 2004.


Biomedical Optics Express | 2010

Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring

Stefan A. Carp; Guangping Dai; David A. Boas; Maria Angela Franceschini; Young R. Kim

Cerebral blood flow (CBF) during stepped hypercapnia was measured simultaneously in the rat brain using near-infrared diffuse correlation spectroscopy (DCS) and arterial spin labeling MRI (ASL). DCS and ASL CBF values agree very well, with high correlation (R=0.86, p< 10-9), even when physiological instability perturbed the vascular response. A partial volume effect was evident in the smaller magnitude of the optical CBF response compared to the MRI values (averaged over the cortical area), primarily due to the inclusion of white matter in the optically sampled volume. The 8.2 and 11.7 mm mid-separation channels of the multi-distance optical probe had the lowest partial volume impact, reflecting ~75 % of the MR signal change. Using a multiplicative correction factor, the ASL CBF could be predicted with no more than 10% relative error, affording an opportunity for real-time relative cerebral metabolism monitoring in conjunction with MR measurement of cerebral blood volume using super paramagnetic contrast agents.


Magnetic Resonance in Medicine | 2000

Contrast Agent-Enhanced Magnetic Resonance Imaging of Skeletal Muscle Damage in Animal Models of Muscular Dystrophy

Volker Straub; Kathleen M. Donahue; Valérie Allamand; Robin L. Davisson; Young R. Kim; Kevin P. Campbell

Membrane lesions play an early role in the pathogenesis of muscular dystrophy. Using a new albumin‐targeted contrast agent (MS‐325), sarcolemmal integrity of two animal models for muscular dystrophy was studied by MRI. Intravenously injected MS‐325 does not enter skeletal muscle of normal mice. However, mdx and Sgca‐null mutant mice, animal models for Duchenne and sarcoglycan‐deficient limb‐girdle muscular dystrophy, respectively, showed significant accumulation of MS‐325 in skeletal muscle. The results suggest that contrast agent‐enhanced MRI could serve as a common, noninvasive imaging procedure for evaluating the localization, extent, and mechanisms of skeletal muscle damage in muscular dystrophy. Furthermore, this method is expected to facilitate assessment of therapeutic approaches in these diseases. Magn Reson Med 44:655–659, 2000.


Magnetic Resonance in Medicine | 2002

Water exchange and inflow affect the accuracy of T1‐GRE blood volume measurements: Implications for the evaluation of tumor angiogenesis

Young R. Kim; Kelly J. Rebro; Kathleen M. Schmainda

The goal of this study was to determine the degree to which vascular water exchange and blood flowing into an imaging slice affect the accuracy of blood volume measurements of brain and tumor tissue when using intravascular T1 contrast agents. The study was performed using 2D and 3D gradient‐echo imaging sequences, since these are two of the most commonly used MRI methods used to evaluate tissue blood volume fraction. Computer simulations were performed and measurements made in a rat 9L gliosarcoma brain tumor model. The computer simulations demonstrate that, with either water exchange or inflow effects alone, the dependence on the physiologic and imaging parameters can be well characterized and therefore potentially offset. In the exchange only case, the parametric dependence of 3D simulations suggest that the best accuracy is achieved with high flip angles, short TR, and low blood contrast agent concentrations. However, for a 2D GRE sequence which is influenced by both water exchange and inflow, the simulations predict that the error trend as a function of the imaging and physiologic parameters is unpredictable and therefore difficult to compensate. With both 2D and 3D GRE the measured blood volume data in rat brain and tumor tissue demonstrate tissue‐specific trends, which reflect differences in the considered physiologic parameters. The experimental data strongly support the computer simulations and also indicate that minimization of the physiological effects by proper selection of imaging parameters, contrast concentration, and volume calculation methods is crucial for accurate assessment of absolute blood volume fraction. Magn Reson Med 47:1110–1120, 2002.


NeuroImage | 2009

Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat

Jie Lu; Guangping Dai; Yasu Egi; Shuning Huang; Seon Joo Kwon; Eng H. Lo; Young R. Kim

Understanding cerebrovascular responses to hyperoxia and hypercapnia is important for investigating exogenous regulation of cerebral hemodynamics. We characterized gas-induced vascular changes in the brains of anesthetized healthy rats using magnetic resonance imaging (MRI) while the rats inhaled 100% O(2) (hyperoxia) and 5% CO(2) (hypercapnia). We used echo planar imaging (EPI), arterial spin labeling (ASL), and intravascular superparamagnetic iron oxide nanoparticles (SPION) to quantify vascular responses as measured by blood oxygenation level dependence (BOLD), cerebral blood flow (CBF), cerebral blood volume (CBV), microvascular volume (MVV), and vessel size index (VSI) in multiple brain regions. Hyperoxia resulted in a statistically significant increase in BOLD-weighted MRI signal and significant decrease in CBF and CBV (P<0.05). During hypercapnia, we observed significant increases in BOLD signal, CBF, MVV, and CBV (P<0.05). Despite the regional variability, general trends of vasoconstriction and vasodilation were reflected in VSI changes during O(2) and CO(2) challenges. Interestingly, there was an evident spatial disparity between the O(2) and CO(2) stimuli-induced functional activation maps; that is, cortical and subcortical regions of the brain exhibited notable differences in response to the two gases. Hemodynamic parameters measured in the cortical regions showed greater reactivity to CO(2), whereas these same parameters measured in subcortical regions showed greater responsivity to O(2). Our results demonstrate significant changes of hemodynamic MRI parameters during systemic hypercapnia and hyperoxia in normal cerebral tissue. These gas-dependent changes are spatiotemporally distinctive, suggesting important feasibility for exogenously controlling local cerebral perfusion.


The Journal of Neuroscience | 2007

Imaging Cerebral Gene Transcripts in Live Animals

Christina H. Liu; Young R. Kim; Jia Q. Ren; Florian Eichler; Bruce R. Rosen; Philip K. Liu

To circumvent the limitations of using postmortem brain in molecular assays, we used avidin–biotin binding to couple superparamagnetic iron oxide nanoparticles (SPIONs) (15–20 nm) to phosphorothioate-modified oligodeoxynucleotides (sODNs) with sequence complementary to c-fos and β-actin mRNA (SPION-cfos and SPION-βactin, respectively) (14–22 nm). The Stern–Volmer constant for the complex of SPION and fluorescein isothiocyanate (FITC)-sODN is 3.1 × 106/m. We studied the feasibility of using the conjugates for in vivo magnetic resonance imaging (MRI) to monitor gene transcription, and demonstrated that these complexes at 40 μg of Fe per kilogram of body weight were retained at least 1 d after intracerebroventricular infusion into the left ventricle of C57Black6 mice. SPION retention measured by MRI as T2* or R2* maps (R2* = 1/T2*) was compared with histology of iron oxide (Prussian blue) and FITC-labeled sODN. We observed significant reduction in magnetic resonance (MR) T2* signal in the right cortex and striatum; retention of SPION-cfos and SPION-βactin positively correlated with c-fos and β-actin mRNA maps obtained from in situ hybridization. Histological examination showed that intracellular iron oxide and FITC-sODN correlated positively with in vivo MR signal reduction. Furthermore, in animals that were administered SPION-cfos and amphetamine (4 mg/kg, i.p.), retention was significantly elevated in the nucleus accumbens, striatum, and medial prefrontal cortex of the forebrain. Control groups that received SPION-cfos and saline or that received a SPION conjugate with a random-sequence probe and amphetamine showed no retention. These results demonstrated that SPION-sODN conjugates can detect active transcriptions of specific mRNA species in living animals with MRI.


Journal of Cerebral Blood Flow and Metabolism | 2005

Measurements of BOLD/CBV ratio show altered fMRI hemodynamics during stroke recovery in rats

Young R. Kim; In J Huang; Seong-Ryong Lee; Emiri Tejima; Joseph B. Mandeville; Maurits P.A. van Meer; George Dai; Yong W Choi; Rick M. Dijkhuizen; Eng H. Lo; Bruce R. Rosen

Brain responses to external stimuli after permanent and transient ischemic insults have been documented using cerebral blood volume weighted (CBVw) functional magnetic resonance imaging (fMRI) in correlation with tissue damage and neurological recovery. Here, we extend our previous studies of stroke recovery in rat models of focal cerebral ischemia by comparing blood oxygen level-dependent (BOLD) and cerebral blood volume (CBV) changes. Responses to forepaw stimulation were measured in normal rats (n = 5) and stroke rats subjected to 2 h of middle cerebral artery occlusion (n = 6). Functional magnetic resonance imaging was performed 2 weeks after stroke to evaluate the recovery process. After stroke, animals showed variable degrees of fMRI activation in ipsilesional cortex, the extent of which did not correlate with structural damages as measured using apparent diffusion coefficient, fractional anisotropy, blood volume, and vessel size index. While the contralesional cortex showed good overlap between BOLD and CBV-activated regions, the ipsilesional cortex showed low covariance between significantly activated voxels by BOLD and CBVw techniques. In particular, the relative activation during contralateral stimuli in the ipsilesional somatosensory cortex was significantly higher for CBVw responses than BOLD, which might be due to stroke-related alterations in fMRI hemodynamic coupling. Aberrant subcortical activations were also observed. When unaffected forelimbs were stimulated, strong bilateral responses were observed. However, little thalamic responses accompanied stimulation of affected forelimbs despite significant activation in the ipsilesional somatosensory cortex. These results suggest that stroke affects not only local hemodynamics and coupling but also other factors including neural connectivity.

Collaboration


Dive into the Young R. Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge