Young Rock Chung
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Young Rock Chung.
Cancer Cell | 2013
Wendy Béguelin; Relja Popovic; Matt Teater; Yanwen Jiang; Karen L. Bunting; Monica Rosen; Hao Shen; Shao Ning Yang; Ling Wang; Teresa Ezponda; Eva Martinez-Garcia; Haikuo Zhang; Sharad K. Verma; Michael T. McCabe; Heidi M. Ott; Glenn S. Van Aller; Ryan G. Kruger; Yan Liu; Charles F. McHugh; David W. Scott; Young Rock Chung; Neil L. Kelleher; Rita Shaknovich; Caretha L. Creasy; Randy D. Gascoyne; Kwok-Kin Wong; Leandro Cerchietti; Ross L. Levine; Omar Abdel-Wahab; Jonathan D. Licht
The EZH2 histone methyltransferase is highly expressed in germinal center (GC) B cells and targeted by somatic mutations in B cell lymphomas. Here, we find that EZH2 deletion or pharmacologic inhibition suppresses GC formation and functions. EZH2 represses proliferation checkpoint genes and helps establish bivalent chromatin domains at key regulatory loci to transiently suppress GC B cell differentiation. Somatic mutations reinforce these physiological effects through enhanced silencing of EZH2 targets. Conditional expression of mutant EZH2 in mice induces GC hyperplasia and accelerated lymphomagenesis in cooperation with BCL2. GC B cell (GCB)-type diffuse large B cell lymphomas (DLBCLs) are mostly addicted to EZH2 but not the more differentiated activated B cell (ABC)-type DLBCLs, thus clarifying the therapeutic scope of EZH2 targeting.
The New England Journal of Medicine | 2012
Margaret K. Callahan; Raajit Rampal; James J. Harding; Virginia M. Klimek; Young Rock Chung; Taha Merghoub; Jedd D. Wolchok; David B. Solit; Neal Rosen; Omar Abdel-Wahab; Ross L. Levine; Paul B. Chapman
Vemurafenib, a selective RAF inhibitor, extends survival among patients with BRAF V600E-mutant melanoma. Vemurafenib inhibits ERK signaling in BRAF V600E-mutant cells but activates ERK signaling in BRAF wild-type cells. This paradoxical activation of ERK signaling is the mechanistic basis for the development of RAS-mutant squamous-cell skin cancers in patients treated with RAF inhibitors. We report the accelerated growth of a previously unsuspected RAS-mutant leukemia in a patient with melanoma who was receiving vemurafenib. Exposure to vemurafenib induced hyperactivation of ERK signaling and proliferation of the leukemic cell population, an effect that was reversed on drug withdrawal.
Cancer Cell | 2015
Eunhee Kim; Janine O. Ilagan; Yang Liang; Gerrit M. Daubner; Stanley Lee; Aravind Ramakrishnan; Yue Li; Young Rock Chung; Jean-Baptiste Micol; Michele E. Murphy; Hana Cho; Min-Kyung Kim; Shlomzion Aumann; Christopher Y. Park; Silvia Buonamici; Peter G. Smith; H. Joachim Deeg; Camille Lobry; Iannis Aifantis; Yorgo Modis; Frédéric H.-T. Allain; Stephanie Halene; Robert K. Bradley; Omar Abdel-Wahab
Mutations affecting spliceosomal proteins are the most common mutations in patients with myelodysplastic syndromes (MDS), but their role in MDS pathogenesis has not been delineated. Here we report that mutations affecting the splicing factor SRSF2 directly impair hematopoietic differentiation in vivo, which is not due to SRSF2 loss of function. By contrast, SRSF2 mutations alter SRSF2s normal sequence-specific RNA binding activity, thereby altering the recognition of specific exonic splicing enhancer motifs to drive recurrent mis-splicing of key hematopoietic regulators. This includes SRSF2 mutation-dependent splicing of EZH2, which triggers nonsense-mediated decay, which, in turn, results in impaired hematopoietic differentiation. These data provide a mechanistic link between a mutant spliceosomal protein, alterations in the splicing of key regulators, and impaired hematopoiesis.
Journal of Experimental Medicine | 2013
Omar Abdel-Wahab; Jie Gao; Mazhar Adli; Anwesha Dey; Thomas Trimarchi; Young Rock Chung; Cem Kuscu; Todd Hricik; Delphine Ndiaye-Lobry; Lindsay M. LaFave; Richard Koche; Alan H. Shih; Olga A. Guryanova; Eunhee Kim; Sheng Li; Suveg Pandey; Joseph Yusup Shin; Leon Telis; Jinfeng Liu; Parva K. Bhatt; Sebastien Monette; Xinyang Zhao; Christopher E. Mason; Christopher Y. Park; Bradley E. Bernstein; Iannis Aifantis; Ross L. Levine
Loss of Asxl1 results in myelodysplastic syndrome, whereas concomitant deletion of Tet2 restores HSC self-renewal and triggers a more severe disease phenotype distinct from that seen in single-gene knockout mice.
Nature Medicine | 2016
Stanley Chun-Wei Lee; Heidi Dvinge; Eunhee Kim; Hana Cho; Jean-Baptiste Micol; Young Rock Chung; Benjamin H. Durham; Akihide Yoshimi; Young Joon Kim; Michael Thomas; Camille Lobry; Chun-Wei Chen; Alessandro Pastore; Justin Taylor; Xujun Wang; Andrei V. Krivtsov; Scott A. Armstrong; James Palacino; Silvia Buonamici; Peter G. Smith; Robert K. Bradley; Omar Abdel-Wahab
Mutations in genes encoding splicing factors (which we refer to as spliceosomal genes) are commonly found in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). These mutations recurrently affect specific amino acid residues, leading to perturbed normal splice site and exon recognition. Spliceosomal gene mutations are always heterozygous and rarely occur together with one another, suggesting that cells may tolerate only a partial deviation from normal splicing activity. To test this hypothesis, we engineered mice to express a mutated allele of serine/arginine-rich splicing factor 2 (Srsf2P95H)—which commonly occurs in individuals with MDS and AML—in an inducible, hemizygous manner in hematopoietic cells. These mice rapidly succumbed to fatal bone marrow failure, demonstrating that Srsf2-mutated cells depend on the wild-type Srsf2 allele for survival. In the context of leukemia, treatment with the spliceosome inhibitor E7107 (refs. 7,8) resulted in substantial reductions in leukemic burden, specifically in isogenic mouse leukemias and patient-derived xenograft AMLs carrying spliceosomal mutations. Whereas E7107 treatment of mice resulted in widespread intron retention and cassette exon skipping in leukemic cells regardless of Srsf2 genotype, the magnitude of splicing inhibition following E7107 treatment was greater in Srsf2-mutated than in Srsf2-wild-type leukemia, consistent with the differential effect of E7107 on survival. Collectively, these data provide genetic and pharmacologic evidence that leukemias with spliceosomal gene mutations are preferentially susceptible to additional splicing perturbations in vivo as compared to leukemias without such mutations. Modulation of spliceosome function may thus provide a new therapeutic avenue in genetically defined subsets of individuals with MDS or AML.
Nature Medicine | 2013
Wei Chin Chou; Makoto Takeo; Piul S. Rabbani; Hai Hu; Wendy Lee; Young Rock Chung; John Carucci; Paul A. Overbeek; Mayumi Ito
During wound healing, stem cells provide functional mature cells to meet acute demands for tissue regeneration. Simultaneously, the tissue must maintain a pool of stem cells to sustain its future regeneration capability. However, how these requirements are balanced in response to injury is unknown. Here we demonstrate that after wounding or ultraviolet type B irradiation, melanocyte stem cells (McSCs) in the hair follicle exit the stem cell niche before their initial cell division, potentially depleting the pool of these cells. We also found that McSCs migrate to the epidermis in a melanocortin 1 receptor (Mc1r)-dependent manner and differentiate into functional epidermal melanocytes, providing a pigmented protective barrier against ultraviolet irradiation over the damaged skin. These findings provide an example in which stem cell differentiation due to injury takes precedence over stem cell maintenance and show the potential for developing therapies for skin pigmentation disorders by manipulating McSCs.
Nature Medicine | 2015
Lindsay M. LaFave; Wendy Béguelin; Richard Koche; Matt Teater; Barbara Spitzer; Alan Chramiec; Efthymia Papalexi; Matthew Keller; Todd Hricik; Katerina Konstantinoff; Jean Baptiste Micol; Benjamin H. Durham; Sarah K. Knutson; John E. Campbell; Gil Blum; Xinxu Shi; Emma H. Doud; Andrei V. Krivtsov; Young Rock Chung; Inna Khodos; Elisa de Stanchina; Ouathek Ouerfelli; Prasad S. Adusumilli; Paul M. Thomas; Neil L. Kelleher; Minkui Luo; Heike Keilhack; Omar Abdel-Wahab; Ari Melnick; Scott A. Armstrong
The tumor suppressors BAP1 and ASXL1 interact to form a polycomb deubiquitinase complex that removes monoubiquitin from histone H2A lysine 119 (H2AK119Ub). However, BAP1 and ASXL1 are mutated in distinct cancer types, consistent with independent roles in regulating epigenetic state and malignant transformation. Here we demonstrate that Bap1 loss in mice results in increased trimethylated histone H3 lysine 27 (H3K27me3), elevated enhancer of zeste 2 polycomb repressive complex 2 subunit (Ezh2) expression, and enhanced repression of polycomb repressive complex 2 (PRC2) targets. These findings contrast with the reduction in H3K27me3 levels seen with Asxl1 loss. Conditional deletion of Bap1 and Ezh2 in vivo abrogates the myeloid progenitor expansion induced by Bap1 loss alone. Loss of BAP1 results in a marked decrease in H4K20 monomethylation (H4K20me1). Consistent with a role for H4K20me1 in the transcriptional regulation of EZH2, expression of SETD8—the H4K20me1 methyltransferase—reduces EZH2 expression and abrogates the proliferation of BAP1-mutant cells. Furthermore, mesothelioma cells that lack BAP1 are sensitive to EZH2 pharmacologic inhibition, suggesting a novel therapeutic approach for BAP1-mutant malignancies.
The New England Journal of Medicine | 2015
Enrico Tiacci; Jae H. Park; Luca De Carolis; Stephen S. Chung; Alessandro Broccoli; Sasinya N. Scott; Francesco Zaja; Sean M. Devlin; Alessandro Pulsoni; Young Rock Chung; Michele Cimminiello; Eunhee Kim; Davide Rossi; Richard Stone; Giovanna Motta; Alan Saven; Marzia Varettoni; Jessica K. Altman; Antonella Anastasia; Michael R. Grever; Achille Ambrosetti; Kanti R. Rai; Vincenzo Fraticelli; Mario E. Lacouture; Angelo Michele Carella; Ross L. Levine; Pietro Leoni; Alessandro Rambaldi; Franca Falzetti; Stefano Ascani
BACKGROUND BRAF V600E is the genetic lesion underlying hairy-cell leukemia. We assessed the safety and activity of the oral BRAF inhibitor vemurafenib in patients with hairy-cell leukemia that had relapsed after treatment with a purine analogue or who had disease that was refractory to purine analogues. METHODS We conducted two phase 2, single-group, multicenter studies of vemurafenib (at a dose of 960 mg twice daily)--one in Italy and one in the United States. The therapy was administered for a median of 16 weeks in the Italian study and 18 weeks in the U.S. study. Primary end points were the complete response rate (in the Italian trial) and the overall response rate (in the U.S. trial). Enrollment was completed (28 patients) in the Italian trial in April 2013 and is still open (26 of 36 planned patients) in the U.S. trial. RESULTS The overall response rates were 96% (25 of 26 patients who could be evaluated) after a median of 8 weeks in the Italian study and 100% (24 of 24) after a median of 12 weeks in the U.S. study. The rates of complete response were 35% (9 of 26 patients) and 42% (10 of 24) in the two trials, respectively. In the Italian trial, after a median follow-up of 23 months, the median relapse-free survival was 19 months among patients with a complete response and 6 months among those with a partial response; the median treatment-free survival was 25 months and 18 months, respectively. In the U.S. trial, at 1 year, the progression-free survival rate was 73% and the overall survival rate was 91%. Drug-related adverse events were usually of grade 1 or 2, and the events most frequently leading to dose reductions were rash and arthralgia or arthritis. Secondary cutaneous tumors (treated with simple excision) developed in 7 of 50 patients. The frequent persistence of phosphorylated ERK-positive leukemic cells in bone marrow at the end of treatment suggests bypass reactivation of MEK and ERK as a resistance mechanism. CONCLUSIONS A short oral course of vemurafenib was highly effective in patients with relapsed or refractory hairy-cell leukemia. (Funded by the Associazione Italiana per la Ricerca sul Cancro and others; EudraCT number, 2011-005487-13; ClinicalTrials.gov number NCT01711632.).
Cancer Discovery | 2015
David M. Hyman; Eli L. Diamond; Cecile Rose T. Vibat; Latifa Hassaine; Jason C. Poole; Minal Patel; Veronica R. Holley; Goran Cabrilo; Timothy T. Lu; Maria E. Arcila; Young Rock Chung; Raajit Rampal; Mario E. Lacouture; Neal Rosen; Funda Meric-Bernstam; José Baselga; Razelle Kurzrock; Mark G. Erlander; Filip Janku; Omar Abdel-Wahab
UNLABELLED Patients with Langerhans cell histiocytosis (LCH) and Erdheim-Chester disease (ECD) have a high frequency of BRAF(V600E) mutations and respond to RAF inhibitors. However, detection of mutations in tissue biopsies is particularly challenging in histiocytoses due to low tumor content and stromal contamination. We applied a droplet-digital PCR assay for quantitative detection of the BRAF(V600E) mutation in plasma and urine cell-free (cf) DNA and performed a prospective, blinded study in 30 patients with ECD/LCH. There was 100% concordance between tissue and urinary cfDNA genotype in treatment-naïve samples. cfDNA analysis facilitated identification of previously undescribed KRAS(G12S)-mutant ECD and dynamically tracked disease burden in patients treated with a variety of therapies. These results indicate that cfDNA BRAF(V600E) mutational analysis in plasma and urine provides a convenient and reliable method of detecting mutational status and can serve as a noninvasive biomarker to monitor response to therapy in LCH and ECD. SIGNIFICANCE Patients with BRAF(V600E)-mutant histiocytic disorders have remarkable responses to RAF inhibition, but mutation detection in tissue in these disorders is challenging. Here, we identify that analysis of plasma and urinary cfDNA provides a reliable method to detect the BRAF(V600E) mutation and monitor response to therapy in these disorders.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Raajit Rampal; Jihae Ahn; Omar Abdel-Wahab; Michelle Nahas; Kai Wang; Doron Lipson; Geoff Otto; Roman Yelensky; Todd Hricik; Anna Sophia McKenney; Gabriela Chiosis; Young Rock Chung; Suveg Pandey; Marcel R.M. van den Brink; Scott A. Armstrong; Ahmet Dogan; Andrew M. Intlekofer; Taghi Manshouri; Christopher Y. Park; Srdan Verstovsek; Franck Rapaport; Philip J. Stephens; Vincent A. Miller; Ross L. Levine
Significance Myeloproliferative neoplasms (MPN) are chronic hematopoietic disorders characterized by clonal proliferation of mature myeloid elements. A subset of MPNs transforms to acute myeloid leukemia (AML). The mechanisms and pathways that contribute to transformation from MPN to AML have not been well delineated. We have characterized the somatic mutational spectrum of post-MPN AML and demonstrate that somatic tumor protein 53 (TP53) mutations are common in JAK2V617F-mutant, post-MPN AML but not in chronic-phase MPN. We demonstrate that expression of JAK2V617F combined with Tp53 loss in a murine model leads to fully penetrant AML in vivo. We have characterized this model and used it to test therapeutic strategies. These data reveal novel insights into the pathogenesis of, and potential therapeutic strategies for, leukemic transformation. Patients with myeloproliferative neoplasms (MPNs) are at significant, cumulative risk of leukemic transformation to acute myeloid leukemia (AML), which is associated with adverse clinical outcome and resistance to standard AML therapies. We performed genomic profiling of post-MPN AML samples; these studies demonstrate somatic tumor protein 53 (TP53) mutations are common in JAK2V617F-mutant, post-MPN AML but not in chronic-phase MPN and lead to clonal dominance of JAK2V617F/TP53-mutant leukemic cells. Consistent with these data, expression of JAK2V617F combined with Tp53 loss led to fully penetrant AML in vivo. JAK2V617F-mutant, Tp53-deficient AML was characterized by an expanded megakaryocyte erythroid progenitor population that was able to propagate the disease in secondary recipients. In vitro studies revealed that post-MPN AML cells were sensitive to decitabine, the JAK1/2 inhibitor ruxolitinib, or the heat shock protein 90 inhibitor 8-(6-iodobenzo[d][1.3]dioxol-5-ylthio)-9-(3-(isopropylamino)propyl)-9H-purine-6-amine (PU-H71). Treatment with ruxolitinib or PU-H71 improved survival of mice engrafted with JAK2V617F-mutant, Tp53-deficient AML, demonstrating therapeutic efficacy for these targeted therapies and providing a rationale for testing these therapies in post-MPN AML.