Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young Sam Lee is active.

Publication


Featured researches published by Young Sam Lee.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands

Christian D. Hodneland; Young Sam Lee; Dal Hee Min; Milan Mrksich

This paper describes a method for the selective and covalent immobilization of proteins to surfaces with control over the density and orientation of the protein. The strategy is based on binding of the serine esterase cutinase to a self-assembled monolayer presenting a phosphonate ligand and the subsequent displacement reaction that covalently binds the ligand to the enzyme active site. Surface plasmon resonance (SPR) spectroscopy showed that cutinase binds irreversibly to a monolayer presenting the capture ligand at a density of 1% mixed among tri(ethylene glycol) groups. The covalent immobilization is specific for cutinase, and the glycol-terminated monolayer effectively prevents unwanted nonspecific adsorption of proteins. To demonstrate that the method could be used to immobilize proteins of interest, a cutinase-calmodulin fusion protein was constructed and immobilized to the monolayer. SPR showed that calcineurin selectively associated with the immobilized calmodulin. This capture ligand immobilization method combines the advantages that the immobilization reaction is highly selective for the intended protein, the tether is covalent and, hence, stable, and the method avoids the need for synthetic modification and rigorous purification of proteins before immobilization. These characteristics make the method well suited to a range of applications and, in particular, for constructing protein microarrays.


The EMBO Journal | 2005

Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin

Qing Guo; Yuequan Shen; Young Sam Lee; Craig S. Gibbs; Milan Mrksich; Wei-Jen Tang

CyaA is crucial for colonization by Bordetella pertussis, the etiologic agent of whooping cough. Here we report crystal structures of the adenylyl cyclase domain (ACD) of CyaA with the C‐terminal domain of calmodulin. Four discrete regions of CyaA bind calcium‐loaded calmodulin with a large buried contact surface. Of those, a tryptophan residue (W242) at an α‐helix of CyaA makes extensive contacts with the calcium‐induced, hydrophobic pocket of calmodulin. Mutagenic analyses show that all four regions of CyaA contribute to calmodulin binding and the calmodulin‐induced conformational change of CyaA is crucial for catalytic activation. A crystal structure of CyaA–calmodulin with adefovir diphosphate, the metabolite of an approved antiviral drug, reveals the location of catalytic site of CyaA and how adefovir diphosphate tightly binds CyaA. The ACD of CyaA shares a similar structure and mechanism of activation with anthrax edema factor (EF). However, the interactions of CyaA with calmodulin completely diverge from those of EF. This provides molecular details of how two structurally homologous bacterial toxins evolved divergently to bind calmodulin, an evolutionarily conserved calcium sensor.


Science | 2012

SAICAR Stimulates Pyruvate Kinase Isoform M2 and Promotes Cancer Cell Survival in Glucose-Limited Conditions

Kirstie E. Keller; Irene S. Tan; Young Sam Lee

A metabolite is identified that may help cancer cells coordinate their mode of energy generation with nutrient conditions. Pyruvate kinase isoform M2 (PKM2) plays an important role in the growth and metabolic reprogramming of cancer cells in stress conditions. Here, we report that SAICAR (succinylaminoimidazolecarboxamide ribose-5′-phosphate, an intermediate of the de novo purine nucleotide synthesis pathway) specifically stimulates PKM2. Upon glucose starvation, cellular SAICAR concentration increased in an oscillatory manner and stimulated PKM2 activity in cancer cells. Changes in SAICAR amounts in cancer cells altered cellular energy level, glucose uptake, and lactate production. The SAICAR-PKM2 interaction also promoted cancer cell survival in glucose-limited conditions. SAICAR accumulation was not observed in normal adult epithelial cells or lung fibroblasts, regardless of glucose conditions. This allosteric regulation may explain how cancer cells coordinate different metabolic pathways to optimize their growth in the nutrient-limited conditions commonly observed in the tumor microenvironment.


The EMBO Journal | 2002

Physiological calcium concentrations regulate calmodulin binding and catalysis of adenylyl cyclase exotoxins

Yuequan Shen; Young Sam Lee; Sandriyana Soelaiman; Pamela Bergson; Dan Lu; Alice Chen; Kathy Beckingham; Zenon Grabarek; Milan Mrksich; Wei-Jen Tang

Edema factor (EF) and CyaA are calmodulin (CaM)‐activated adenylyl cyclase exotoxins involved in the pathogenesis of anthrax and whooping cough, respectively. Using spectroscopic, enzyme kinetic and surface plasmon resonance spectroscopy analyses, we show that low Ca2+ concentrations increase the affinity of CaM for EF and CyaA causing their activation, but higher Ca2+ concentrations directly inhibit catalysis. Both events occur in a physiologically relevant range of Ca2+ concentrations. Despite the similarity in Ca2+ sensitivity, EF and CyaA have substantial differences in CaM binding and activation. CyaA has 100‐fold higher affinity for CaM than EF. CaM has N‐ and C‐terminal globular domains, each binding two Ca2+ ions. CyaA can be fully activated by CaM mutants with one defective C‐terminal Ca2+‐binding site or by either terminal domain of CaM while EF cannot. EF consists of a catalytic core and a helical domain, and both are required for CaM activation of EF. Mutations that decrease the interaction of the helical domain with the catalytic core create an enzyme with higher sensitivity to Ca2+–CaM activation. However, CyaA is fully activated by CaM without the domain corresponding to the helical domain of EF.


Trends in Biotechnology | 2002

Protein chips: from concept to practice

Young Sam Lee; Milan Mrksich

A series of exciting reports over the past two years has established the usefulness of protein chips and made important advances in preparing protein arrays. However, several technical challenges must still be addressed to make these tools available to the wider community of researchers. Here, we discusses these challenges and survey recent opportunities for creating quantitative assays, preparing and immobilizing large numbers of proteins, using detection methods to analyze the results of chip-based experiments, and using informatics tools to interpret these results.


Nature | 2013

Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function

Jungwook Kim; Hui Xiao; Jeffrey B. Bonanno; Chakrapani Kalyanaraman; Shoshana D. Brown; Xiangying Tang; Nawar Al-Obaidi; Yury Patskovsky; Patricia C. Babbitt; Matthew P. Jacobson; Young Sam Lee; Steven C. Almo

Identifying novel metabolites and characterizing their biological functions are major challenges of the post-genomic era. X-ray crystallography can reveal unanticipated ligands which persist through purification and crystallization. These adventitious protein:ligand complexes provide insights into new activities, pathways and regulatory mechanisms. We describe a new metabolite, carboxy-S-adenosylmethionine (Cx-SAM), its biosynthetic pathway and its role in tRNA modification. The structure of CmoA, a member of the SAM-dependent methyltransferase superfamily, revealed a ligand in the catalytic site consistent with Cx-SAM. Mechanistic analyses demonstrated an unprecedented role for prephenate as the carboxyl donor and the involvement of a unique ylide intermediate as the carboxyl acceptor in the CmoA-mediated conversion of SAM to Cx-SAM. A second member of the SAM-dependent methyltransferase superfamily, CmoB, recognizes Cx-SAM and acts as a carboxymethyltransferase to convert 5-hydroxyuridine (ho5U) into 5-oxyacetyl uridine (cmo5U) at the wobble position of multiple tRNAs in Gram negative bacteria1, resulting in expanded codon-recognition properties2,3. CmoA and CmoB represent the first documented synthase and transferase for Cx-SAM. These findings reveal new functional diversity in the SAM-dependent methyltransferase superfamily and expand the metabolic and biological contributions of SAM-based biochemistry. These discoveries highlight the value of structural genomics approaches for identifying ligands in the context of their physiologically relevant macromolecular binding partners and for aiding in functional assignment.The identification of novel metabolites and the characterization of their biological functions are major challenges in biology. X-ray crystallography can reveal unanticipated ligands that persist through purification and crystallization. These adventitious protein–ligand complexes provide insights into new activities, pathways and regulatory mechanisms. We describe a new metabolite, carboxy-S-adenosyl-l-methionine (Cx-SAM), its biosynthetic pathway and its role in transfer RNA modification. The structure of CmoA, a member of the SAM-dependent methyltransferase superfamily, revealed a ligand consistent with Cx-SAM in the catalytic site. Mechanistic analyses showed an unprecedented role for prephenate as the carboxyl donor and the involvement of a unique ylide intermediate as the carboxyl acceptor in the CmoA-mediated conversion of SAM to Cx-SAM. A second member of the SAM-dependent methyltransferase superfamily, CmoB, recognizes Cx-SAM and acts as a carboxymethyltransferase to convert 5-hydroxyuridine into 5-oxyacetyl uridine at the wobble position of multiple tRNAs in Gram-negative bacteria, resulting in expanded codon-recognition properties. CmoA and CmoB represent the first documented synthase and transferase for Cx-SAM. These findings reveal new functional diversity in the SAM-dependent methyltransferase superfamily and expand the metabolic and biological contributions of SAM-based biochemistry. These discoveries highlight the value of structural genomics approaches in identifying ligands within the context of their physiologically relevant macromolecular binding partners, and in revealing their functions.


Journal of Biological Chemistry | 2010

A Single Mutation in Human Mitochondrial DNA Polymerase Pol γA Affects Both Polymerization and Proofreading Activities of Only the Holoenzyme

Young Sam Lee; Kenneth A. Johnson; Ian J. Molineux; Y. Whitney Yin

Common causes of human mitochondrial diseases are mutations affecting DNA polymerase (Pol) γ, the sole polymerase responsible for DNA synthesis in mitochondria. Although the polymerase and exonuclease active sites are located on the catalytic subunit Pol γA, in holoenzyme both activities are regulated by the accessory subunit Pol γB. Several patients with severe neurological and muscular disorders were reported to carry the Pol γA substitutions R232G or R232H, which lie outside of either active site. We report that Arg232 substitutions have no effect on independent Pol γA activities but show major defects in the Pol γA-Pol γB holoenzyme, including decreased polymerase and increased exonuclease activities, the latter with decreased selectivity for mismatches. We show that Pol γB facilitates distinguishing mismatched from base-paired primer termini and that Pol γA Arg232 is essential for mediating this regulatory function of the accessory subunit. This study provides a molecular basis for the disease symptoms exhibited by patients carrying those substitutions.


Nucleic Acids Research | 2015

Determinants of the CmoB carboxymethyl transferase utilized for selective tRNA wobble modification

Jungwook Kim; Hui Xiao; Junseock Koh; Yikai Wang; Jeffrey B. Bonanno; Keisha Thomas; Patricia C. Babbitt; Shoshana D. Brown; Young Sam Lee; Steven C. Almo

Enzyme-mediated modifications at the wobble position of tRNAs are essential for the translation of the genetic code. We report the genetic, biochemical and structural characterization of CmoB, the enzyme that recognizes the unique metabolite carboxy-S-adenosine-L-methionine (Cx-SAM) and catalyzes a carboxymethyl transfer reaction resulting in formation of 5-oxyacetyluridine at the wobble position of tRNAs. CmoB is distinctive in that it is the only known member of the SAM-dependent methyltransferase (SDMT) superfamily that utilizes a naturally occurring SAM analog as the alkyl donor to fulfill a biologically meaningful function. Biochemical and genetic studies define the in vitro and in vivo selectivity for Cx-SAM as alkyl donor over the vastly more abundant SAM. Complementary high-resolution structures of the apo- and Cx-SAM bound CmoB reveal the determinants responsible for this remarkable discrimination. Together, these studies provide mechanistic insight into the enzymatic and non-enzymatic feature of this alkyl transfer reaction which affords the broadened specificity required for tRNAs to recognize multiple synonymous codons.


Bioorganic & Medicinal Chemistry | 2001

Selection of a high-affinity DNA pool for a bZip protein with an out-of-phase alignment of the basic region relative to the leucine zipper.

Young Sam Lee; Daniel G Gurnon; Jessica J. Hollenbeck; Martha G. Oakley

bZip transcription factors contain two regions that are required for DNA binding: a leucine zipper dimerization domain and a highly charged basic region that directly contacts DNA. The spacing between these subdomains is strictly conserved, and changes in this spacing result in a loss of function. Using an in vitro selection strategy, we have investigated the ability of a bZip protein with incorrect spacing between these two regions to bind specifically to DNA. Surprisingly, we find that although such a protein does not bind to its predicted site, it is possible to isolate a pool of DNAs that bind with very similar affinity to that of GCN4 for its optimum DNA site.


Science | 2007

Regulation of a Cyclin-CDK-CDK Inhibitor Complex by Inositol Pyrophosphates

Young Sam Lee; Sashidhar Mulugu; John D. York; Erin K. O'Shea

Collaboration


Dive into the Young Sam Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Xiao

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jeffrey B. Bonanno

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jungwook Kim

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge