Youngshin Lim
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Youngshin Lim.
The Journal of Neuroscience | 2011
Youngshin Lim; Victoria M. Kehm; Edward B. Lee; James H. Soper; Chi Li; John Q. Trojanowski; Virginia M.-Y. Lee
Abnormally accumulated α-synuclein (α-syn) is a pathological hallmark of Lewy body-related disorders such as Parkinsons disease (PD) and dementia with Lewy body disease (DLB). However, it is not well understood whether and how abnormal accumulation of α-syn leads to cognitive impairment or dementia in PD and DLB. Furthermore, it is not known whether targeted removal of α-syn pathology can reverse cognitive decline. Here, we found that the distribution of α-syn pathology in an inducible α-syn transgenic mouse model recapitulates that in human DLB. Abnormal accumulation of α-syn in the limbic system, particularly in the hippocampus, correlated with memory impairment and led to structural synaptic deficits. Furthermore, when α-syn expression was suppressed, we observed partial clearing of pre-existing α-syn pathology and reversal of structural synaptic defects, resulting in an improvement in memory function.
Molecular and Cellular Biology | 2008
Ginam Cho; Youngshin Lim; Dina Zand; Jeffrey A. Golden
ABSTRACT Bone morphogenic proteins (BMPs) play pleotrophic roles in nervous system development, and their signaling is highly regulated at virtually every step in the pathway. We have cloned a novel gene, Sizn1 (Smad-interacting zinc finger protein), which functions as a transcriptional coactivator of BMP signaling. It positively modulates BMP signaling by interacting with Smad family members and associating with CBP in the transcription complex. Sizn1 is expressed in the ventral embryonic forebrain, where, as we will show, it contributes to BMP-dependent, cholinergic-neuron-specific gene expression. These data indicate that Sizn1 is a positive modulator of BMP signaling and provide further insight into how BMP signaling can be modulated in neuronal progenitor subsets to influence cell-type-specific gene expression and development.
Mechanisms of Development | 2005
Youngshin Lim; Ginam Cho; Jeremy Minarcik; Jeffrey A. Golden
The diencephalon is the caudal part of the forebrain and is organized into easily identifiable clusters of neurons called nuclei. Neurons in different nuclei project to discrete brain regions. Thus precise organization of the nuclei during forebrain development is necessary to build accurate neural circuits. How diencephalic development is regulated is poorly understood. BMP signaling participates in central nervous system patterning and development at many levels along the neural axis. Based on their expression we hypothesized BMPs play a role in diencephalic development. To test this hypothesis, we electroporated constitutively active and dominant negative forms of type I BMP receptors (Bmpr1a and Bmpr1b) into the embryonic chick forebrain. Ectopic induction of BMP signaling through constitutively active forms of the type I BMP receptors perturbs the normal gene expression patterns in the diencephalon and increases apoptotic cell death. These defects lead to disorganization of the diencephalic nuclei, suggesting BMP signaling is sufficient to modify diencephalic development. Loss-of-function studies, using dominant negative forms of Bmpr1a and Bmpr1b, indicate type I BMP receptors are necessary for normal eye and craniofacial development. However, they do not appear to be required for normal diencephalic development. In summary, our data indicate that while not necessary, BMP signaling via Bmpr1a and Bmpr1b, is sufficient to modify nuclear organization in the chick diencephalon.
Experimental Neurology | 2010
Youngshin Lim; Vicky M. Kehm; Chi Li; John Q. Trojanowski; Virginia M.-Y. Lee
Transgenic (Tg) mouse models of Parkinsons disease (PD) generated to date have primarily been designed to overexpress human alpha-synuclein (alpha-syn) to recapitulate PD-like motor impairments as well as PD-like nigrostriatal degeneration and alpha-syn pathology. However, cognitive impairments and cortical alpha-syn pathology are also common in PD patients. To model these features of PD, we created forebrain-specific conditional Tg mice that overexpress human wild type (WT) or A53T mutant alpha-syn. Here we show that both WT and A53T mutant alpha-syn lead to massive degeneration of postmitotic neurons in the hippocampal dentate gyrus (DG) during postnatal development, with hippocampal synapse loss as evidenced by reduced levels of pre- and postsynaptic markers. However, when mutant and WT alpha-syn expression was repressed until the Tg mice were mature postnatally and then induced for several months, no hippocampal neuron loss was observed. These data imply that developing neurons are more vulnerable to degenerate than mature neurons as a consequence of forebrain WT and mutant alpha-syn overexpression.
Annals of Neurology | 2015
Youngshin Lim; Il-Taeg Cho; Leah J. Schoel; Ginam Cho; Jeffrey A. Golden
Mutations in receptor expression enhancing protein 1 (REEP1) are associated with hereditary spastic paraplegias (HSPs). Although axonal degeneration is thought to be a predominant feature in HSP, the role of REEP1 mutations in degeneration is largely unknown. Previous studies have implicated a role for REEP1 in the endoplasmic reticulum (ER), whereas others localized REEP1 with mitochondria. We sought to resolve the cellular localization of REEP1 and further elucidate the pathobiology underlying REEP1 mutations in patients.
Journal of Biological Chemistry | 2009
Ginam Cho; Youngshin Lim; Jeffrey A. Golden
Mutations in Sizn1 (Zcchc12), a novel transcriptional co-activator in the BMP signaling pathway, are associated with X-linked mental retardation. Previously, we demonstrated that Sizn1 positively modulates the BMP signal by interacting with Smad family members and cAMP-responsive element-binding protein-binding protein. To further define the molecular basis of Sizn1 function, we have explored its subcellular localization and generated various deletion mutants to carry out domain analyses. Here, we report that Sizn1 localizes to promyelocytic leukemia protein nuclear bodies (PML-NBs). Sizn1 deletion mutants that disrupt the MA homologous domain or the middle region fail to target to the PML-NB. We show that two SUMO interaction motifs (SIMs) in Sizn1 can bind to SUMO and govern SUMO conjugation to Sizn1 in the absence of the consensus motif for SUMO attachment. Interestingly, the SIM mutant Sizn1 localizes to nuclear bodies, but not to PML-NBs. Thus, SIMs mediate the localization of Sizn1 to PML-NB. Interestingly, mutations in SIM sequences and deletion of the MA homologous domain also affected the transcriptional co-activation function of a Sizn1. Taken together, our data indicate that the SIMs in Sizn1 are required for its PML-NB localization and for the full transcriptional co-activation function in BMP signaling.
Mechanisms of Development | 2002
Youngshin Lim; Jeffrey A. Golden
The diencephalon is the caudal part of the developing forebrain that gives rise to the epithalamus, thalamus, hypothalamus and retina. The mature diencephalon is functionally and anatomically parceled into well-defined nuclei. In an effort to understand how this region of the brain develops we examined the expression of several transcription factors during development. We find that the LIM homeodomain transcription factor, cLhx2b, and the zinc finger transcription factors, cZic1 and cZic3, are predominantly expressed in partially overlapping domains of the chick dorsal diencephalon. Interestingly, a correlation exists between their expression in neuroepithelial progenitor cells at early stages and in the differentiated nuclei at progressively more advanced stages of development.
Developmental Biology | 2014
Ginam Cho; Youngshin Lim; Il-Taeg Cho; Jacqueline C. Simonet; Jeffrey A. Golden
Mutations in the Aristaless related homeodomain transcription factor (ARX) are associated with a diverse set of X-linked mental retardation and epilepsy syndromes in humans. Although most studies have been focused on its function in the forebrain, ARX is also expressed in other regions of the developing nervous system including the floor plate (FP) of the spinal cord where its function is incompletely understood. To investigate the role of Arx in the FP, we performed gain-of-function studies in the chick using in ovo electroporation, and loss-of-function studies in Arx-deficient mice. We have found that Arx, in conjunction with FoxA2, directly induces Sonic hedgehog (Shh) expression through binding to a Shh floor plate enhancer (SFPE2). We also observed that FoxA2 induces Arx through its transcriptional activation domain whereas Nkx2.2, induced by Shh, abolishes this induction. Our data support a feedback loop model for Arx function; through interactions with FoxA2, Arx positively regulates Shh expression in the FP, and Shh signaling in turn activates Nkx2.2, which suppresses Arx expression. Furthermore, our data are evidence that Arx plays a role as a context dependent transcriptional activator, rather than a primary inducer of Shh expression, potentially explaining how mutations in ARX are associated with diverse, and often subtle, defects.
Journal of Biological Chemistry | 2017
Il-Taeg Cho; Guillaume Adelmant; Youngshin Lim; Jarrod A. Marto; Ginam Cho; Jeffrey A. Golden
To maintain cellular homeostasis, subcellular organelles communicate with each other and form physical and functional networks through membrane contact sites coupled by protein tethers. In particular, endoplasmic reticulum (ER)–mitochondrial contacts (EMC) regulate diverse cellular activities such as metabolite exchange (Ca2+ and lipids), intracellular signaling, apoptosis, and autophagy. The significance of EMCs has been highlighted by reports indicating that EMC dysregulation is linked to neurodegenerative diseases. Therefore, obtaining a better understanding of the physical and functional components of EMCs should provide new insights into the pathogenesis of several neurodegenerative diseases. Here, we applied engineered ascorbate peroxidase (APEX) to map the proteome at EMCs in live HEK293 cells. APEX was targeted to the outer mitochondrial membrane, and proximity-labeled proteins were analyzed by stable isotope labeling with amino acids in culture (SILAC)-LC/MS-MS. We further refined the specificity of the proteins identified by combining biochemical subcellular fractionation to the protein isolation method. We identified 405 proteins with a 2.0-fold cutoff ratio (log base 2) in SILAC quantification from replicate experiments. We performed validation screening with a Split-Rluc8 complementation assay that identified reticulon 1A (RTN1A), an ER-shaping protein localized to EMCs as an EMC promoter. Proximity mapping augmented with biochemical fractionation and additional validation methods reported here could be useful to discover other components of EMCs, identify mitochondrial contacts with other organelles, and further unravel their communication.
Neurogenetics | 2012
Ginam Cho; MacLean P. Nasrallah; Youngshin Lim; Jeffrey A. Golden
Mutations in the Aristaless-related homeobox gene (ARX) are associated with a wide variety of neurologic disorders including lissencephaly, hydrocephaly, West syndrome, Partington syndrome, and X-linked intellectual disability with or without epilepsy. A genotype–phenotype correlation exists for ARX mutations; however, the molecular basis for this association has not been investigated. To begin understanding the molecular basis for ARX mutations, we tested the DNA binding sequence preference and transcriptional repression activity for Arx, deletion mutants and mutants associated with various neurologic disorders. We found DNA binding preferences of Arx are influenced by the amino acid sequences adjacent to the homeodomain. Mutations in the homeodomain show a loss of DNA binding activity, while the T333N and P353R homeodomain mutants still possess DNA binding activities, although less than the wild type. Transcription repression activity, the primary function of ARX, is reduced in all mutants except the L343Q, which has no DNA binding activity and does not functionally repress Arx targets. These data indicate that mutations in the homeodomain result in not only a loss of DNA binding activity but also loss of transcriptional repression activity. Our results provide novel insights into the pathogenesis of ARX-related disorders and possible directions to pursue potential therapeutic interventions.