Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ginam Cho is active.

Publication


Featured researches published by Ginam Cho.


Human Molecular Genetics | 2008

Identification of Arx transcriptional targets in the developing basal forebrain

Carl T. Fulp; Ginam Cho; Eric D. Marsh; Ilya M. Nasrallah; Patricia A. Labosky; Jeffrey A. Golden

Mutations in the aristaless-related homeobox (ARX) gene are associated with multiple neurologic disorders in humans. Studies in mice indicate Arx plays a role in neuronal progenitor proliferation and development of the cerebral cortex, thalamus, hippocampus, striatum, and olfactory bulbs. Specific defects associated with Arx loss of function include abnormal interneuron migration and subtype differentiation. How disruptions in ARX result in human disease and how loss of Arx in mice results in these phenotypes remains poorly understood. To gain insight into the biological functions of Arx, we performed a genome-wide expression screen to identify transcriptional changes within the subpallium in the absence of Arx. We have identified 84 genes whose expression was dysregulated in the absence of Arx. This population was enriched in genes involved in cell migration, axonal guidance, neurogenesis, and regulation of transcription and includes genes implicated in autism, epilepsy, and mental retardation; all features recognized in patients with ARX mutations. Additionally, we found Arx directly repressed three of the identified transcription factors: Lmo1, Ebf3 and Shox2. To further understand how the identified genes are involved in neural development, we used gene set enrichment algorithms to compare the Arx gene regulatory network (GRN) to the Dlx1/2 GRN and interneuron transcriptome. These analyses identified a subset of genes in the Arx GRN that are shared with that of the Dlx1/2 GRN and that are enriched in the interneuron transcriptome. These data indicate Arx plays multiple roles in forebrain development, both dependent and independent of Dlx1/2, and thus provides further insights into the understanding of the mechanisms underlying the pathology of mental retardation and epilepsy phenotypes resulting from ARX mutations.


Molecular and Cellular Biology | 2008

Sizn1 is a novel protein that functions as a transcriptional coactivator of bone morphogenic protein signaling.

Ginam Cho; Youngshin Lim; Dina Zand; Jeffrey A. Golden

ABSTRACT Bone morphogenic proteins (BMPs) play pleotrophic roles in nervous system development, and their signaling is highly regulated at virtually every step in the pathway. We have cloned a novel gene, Sizn1 (Smad-interacting zinc finger protein), which functions as a transcriptional coactivator of BMP signaling. It positively modulates BMP signaling by interacting with Smad family members and associating with CBP in the transcription complex. Sizn1 is expressed in the ventral embryonic forebrain, where, as we will show, it contributes to BMP-dependent, cholinergic-neuron-specific gene expression. These data indicate that Sizn1 is a positive modulator of BMP signaling and provide further insight into how BMP signaling can be modulated in neuronal progenitor subsets to influence cell-type-specific gene expression and development.


Human Molecular Genetics | 2012

Differential effects of a polyalanine tract expansion in Arx on neural development and gene expression

MacLean P. Nasrallah; Ginam Cho; Jacqueline C. Simonet; Mary E. Putt; Kunio Kitamura; Jeffrey A. Golden

Polyalanine (poly-A) tracts exist in 494 annotated proteins; to date, expansions in these tracts have been associated with nine human diseases. The pathogenetic mechanism by which a poly-A tract results in these various human disorders remains uncertain. To understand the role of this mutation type, we investigated the change in functional properties of the transcription factor Arx when it has an expanded poly-A tract (Arx(E)), a mutation associated with infantile spasms and intellectual disabilities in humans. We found that although Arx(E) functions normally in the dorsal brain, its function in subpallial-derived populations of neurons is compromised. These contrasting functions are associated with the misregulation of Arx targets through the loss of the ability of Arx(E) to interact with the Arx cofactor Tle1. Our data demonstrate a novel mechanism for poly-A expansion diseases: the misregulation of a subset of target genes normally regulated by a transcription factor.


Mechanisms of Development | 2005

Altered BMP signaling disrupts chick diencephalic development

Youngshin Lim; Ginam Cho; Jeremy Minarcik; Jeffrey A. Golden

The diencephalon is the caudal part of the forebrain and is organized into easily identifiable clusters of neurons called nuclei. Neurons in different nuclei project to discrete brain regions. Thus precise organization of the nuclei during forebrain development is necessary to build accurate neural circuits. How diencephalic development is regulated is poorly understood. BMP signaling participates in central nervous system patterning and development at many levels along the neural axis. Based on their expression we hypothesized BMPs play a role in diencephalic development. To test this hypothesis, we electroporated constitutively active and dominant negative forms of type I BMP receptors (Bmpr1a and Bmpr1b) into the embryonic chick forebrain. Ectopic induction of BMP signaling through constitutively active forms of the type I BMP receptors perturbs the normal gene expression patterns in the diencephalon and increases apoptotic cell death. These defects lead to disorganization of the diencephalic nuclei, suggesting BMP signaling is sufficient to modify diencephalic development. Loss-of-function studies, using dominant negative forms of Bmpr1a and Bmpr1b, indicate type I BMP receptors are necessary for normal eye and craniofacial development. However, they do not appear to be required for normal diencephalic development. In summary, our data indicate that while not necessary, BMP signaling via Bmpr1a and Bmpr1b, is sufficient to modify nuclear organization in the chick diencephalon.


Annals of Neurology | 2015

Hereditary spastic paraplegia-linked REEP1 modulates endoplasmic reticulum/mitochondria contacts

Youngshin Lim; Il-Taeg Cho; Leah J. Schoel; Ginam Cho; Jeffrey A. Golden

Mutations in receptor expression enhancing protein 1 (REEP1) are associated with hereditary spastic paraplegias (HSPs). Although axonal degeneration is thought to be a predominant feature in HSP, the role of REEP1 mutations in degeneration is largely unknown. Previous studies have implicated a role for REEP1 in the endoplasmic reticulum (ER), whereas others localized REEP1 with mitochondria. We sought to resolve the cellular localization of REEP1 and further elucidate the pathobiology underlying REEP1 mutations in patients.


Journal of Biological Chemistry | 2009

SUMO Interaction Motifs in Sizn1 Are Required for Promyelocytic Leukemia Protein Nuclear Body Localization and for Transcriptional Activation

Ginam Cho; Youngshin Lim; Jeffrey A. Golden

Mutations in Sizn1 (Zcchc12), a novel transcriptional co-activator in the BMP signaling pathway, are associated with X-linked mental retardation. Previously, we demonstrated that Sizn1 positively modulates the BMP signal by interacting with Smad family members and cAMP-responsive element-binding protein-binding protein. To further define the molecular basis of Sizn1 function, we have explored its subcellular localization and generated various deletion mutants to carry out domain analyses. Here, we report that Sizn1 localizes to promyelocytic leukemia protein nuclear bodies (PML-NBs). Sizn1 deletion mutants that disrupt the MA homologous domain or the middle region fail to target to the PML-NB. We show that two SUMO interaction motifs (SIMs) in Sizn1 can bind to SUMO and govern SUMO conjugation to Sizn1 in the absence of the consensus motif for SUMO attachment. Interestingly, the SIM mutant Sizn1 localizes to nuclear bodies, but not to PML-NBs. Thus, SIMs mediate the localization of Sizn1 to PML-NB. Interestingly, mutations in SIM sequences and deletion of the MA homologous domain also affected the transcriptional co-activation function of a Sizn1. Taken together, our data indicate that the SIMs in Sizn1 are required for its PML-NB localization and for the full transcriptional co-activation function in BMP signaling.


Cerebral Cortex | 2015

ARX Regulates Cortical Intermediate Progenitor Cell Expansion and Upper Layer Neuron Formation Through Repression of Cdkn1c

Gaia Colasante; Jacqueline C. Simonet; Raffaele A. Calogero; Stefania Crispi; Alessandro Sessa; Ginam Cho; Jeffrey A. Golden; Vania Broccoli

Mutations in the Aristaless-related homeobox (ARX) gene are found in a spectrum of epilepsy and X-linked intellectual disability disorders. During development Arx is expressed in pallial ventricular zone (VZ) progenitor cells where the excitatory projection neurons of the cortex are born. Arx(-/Y) mice were shown to have decreased proliferation in the cortical VZ resulting in smaller brains; however, the basis for this reduced proliferation was not established. To determine the role of ARX on cell cycle dynamics in cortical progenitor cells, we generated cerebral cortex-specific Arx mouse mutants (cKO). The loss of pallial Arx resulted in the reduction of cortical progenitor cells, particularly the proliferation of intermediate progenitor cells (IPCs) was affected. Later in development and postnatally cKO brains showed a reduction of upper layer but not deeper layer neurons consistent with the IPC defect. Transcriptional profile analysis of E14.5 Arx-ablated cortices compared with control revealed that CDKN1C, an inhibitor of cell cycle progression, is overexpressed in the cortical VZ and SVZ of Arx KOs throughout corticogenesis. We also identified ARX as a direct regulator of Cdkn1c transcription. Together these data support a model where ARX regulates the expansion of cortical progenitor cells through repression of Cdkn1c.


American Journal of Medical Genetics Part A | 2008

Evidence that SIZN1 is a candidate X-linked mental retardation gene†

Ginam Cho; Shambhu S. Bhat; Jinsong Gao; Julianne S. Collins; R. Curtis Rogers; Richard J. Simensen; Charles E. Schwartz; Jeffrey A. Golden; Anand K. Srivastava

An estimated 1–3% of individuals within the United States are diagnosed with mental retardation (MR), yet the cause is unknown in nearly 50% of the patients. While several environmental, genetic and combined teratogenetic etiologies have been identified, many causative genes remain to be identified. Furthermore, the pathogenetic mechanisms underlying MR are known for very few of these genes. Males have a much higher incidence of MR implicating genes on the X‐chromosome. We have recently identified a novel gene, SIZN1, on the X‐chromosome and showed that it functions in modulating the BMP signaling pathway. Furthermore, we have shown this gene is necessary for basal forebrain cholinergic neuron (BFCN) specific gene expression. Given that cognitive function is impaired when BFCNs are lost or functionally disrupted, we undertook a screen of cognitively impaired males for SIZN1 mutations. We report on four different sequence variants in SIZN1 in 11 individuals with nonsyndromic X‐linked mental retardation(XLMR). Our data implicate SIZN1 as a candidate gene for XLMR and/or as a neurocognitive functional modifier.


Developmental Biology | 2014

Arx together with FoxA2, regulates Shh floor plate expression.

Ginam Cho; Youngshin Lim; Il-Taeg Cho; Jacqueline C. Simonet; Jeffrey A. Golden

Mutations in the Aristaless related homeodomain transcription factor (ARX) are associated with a diverse set of X-linked mental retardation and epilepsy syndromes in humans. Although most studies have been focused on its function in the forebrain, ARX is also expressed in other regions of the developing nervous system including the floor plate (FP) of the spinal cord where its function is incompletely understood. To investigate the role of Arx in the FP, we performed gain-of-function studies in the chick using in ovo electroporation, and loss-of-function studies in Arx-deficient mice. We have found that Arx, in conjunction with FoxA2, directly induces Sonic hedgehog (Shh) expression through binding to a Shh floor plate enhancer (SFPE2). We also observed that FoxA2 induces Arx through its transcriptional activation domain whereas Nkx2.2, induced by Shh, abolishes this induction. Our data support a feedback loop model for Arx function; through interactions with FoxA2, Arx positively regulates Shh expression in the FP, and Shh signaling in turn activates Nkx2.2, which suppresses Arx expression. Furthermore, our data are evidence that Arx plays a role as a context dependent transcriptional activator, rather than a primary inducer of Shh expression, potentially explaining how mutations in ARX are associated with diverse, and often subtle, defects.


Pediatric Research | 2007

Identification of a prosencephalic-specific enhancer of SALL1: comparative genomic approach using the chick embryo.

Kosuke Izumi; Michihiko Aramaki; Tokuhiro Kimura; Yoko Naito; Toru Udaka; Masanori Uchikawa; Hisato Kondoh; Hidekazu Suzuki; Ginam Cho; Yasunori Okada; Takao Takahashi; Jeffrey A. Golden; Kenjiro Kosaki

Comparative genomics is a promising approach for identifying regulatory elements governing the unique spatio-temporal expression patterns of morphogenetic genes. Conserved noncoding genomic sequences are candidate regulatory elements. Here we performed a survey for conserved noncoding elements (CNE) nested within the SALL1 gene; mutations in this gene result in the Townes-Brocks syndrome. A comparison of the genomic sequence between humans and chicken revealed five CNE. Genomic fragments corresponding to each CNE were inserted into reporter cassettes consisting of eGFP cDNA and a minimal promoter. These constructs were electroporated into chick embryos during gastrula, neurula, and pharyngula stages. Among the five CNE that were examined, one 443 bp CNE exhibited tissue-specific enhancer activity. At the neurula stage, the eGFP signal was visualized in the prosencephalon. At the pharyngula stage, the eGFP signal was confined within the anterior neural ridge, which represents one of the morphogenetic centers regulating the patterning of the anterior neural plate. This report identifies, for the first time, an enhancer element of SALL1.

Collaboration


Dive into the Ginam Cho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youngshin Lim

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Il-Taeg Cho

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl T. Fulp

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric D. Marsh

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilya M. Nasrallah

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge