Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yousin Suh is active.

Publication


Featured researches published by Yousin Suh.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Functionally significant insulin-like growth factor I receptor mutations in centenarians.

Yousin Suh; Gil Atzmon; Mi Ook Cho; David Hwang; Bingrong Liu; Daniel J. Leahy; Nir Barzilai; Pinchas Cohen

Rather than being a passive, haphazard process of wear and tear, lifespan can be modulated actively by components of the insulin/insulin-like growth factor I (IGFI) pathway in laboratory animals. Complete or partial loss-of-function mutations in genes encoding components of the insulin/IGFI pathway result in extension of life span in yeasts, worms, flies, and mice. This remarkable conservation throughout evolution suggests that altered signaling in this pathway may also influence human lifespan. On the other hand, evolutionary tradeoffs predict that the laboratory findings may not be relevant to human populations, because of the high fitness cost during early life. Here, we studied the biochemical, phenotypic, and genetic variations in a cohort of Ashkenazi Jewish centenarians, their offspring, and offspring-matched controls and demonstrated a gender-specific increase in serum IGFI associated with a smaller stature in female offspring of centenarians. Sequence analysis of the IGF1 and IGF1 receptor (IGF1R) genes of female centenarians showed overrepresentation of heterozygous mutations in the IGF1R gene among centenarians relative to controls that are associated with high serum IGFI levels and reduced activity of the IGFIR as measured in transformed lymphocytes. Thus, genetic alterations in the human IGF1R that result in altered IGF signaling pathway confer an increase in susceptibility to human longevity, suggesting a role of this pathway in modulation of human lifespan.


Aging Cell | 2015

Interventions to Slow Aging in Humans: Are We Ready?

Valter D. Longo; Adam Antebi; Andrzej Bartke; Nir Barzilai; Holly M. Brown-Borg; Calogero Caruso; Tyler J. Curiel; Rafael de Cabo; Claudio Franceschi; David Gems; Donald K. Ingram; Thomas E. Johnson; Brian K. Kennedy; Cynthia Kenyon; Samuel Klein; John J. Kopchick; Guenter Lepperdinger; Frank Madeo; Mario G. Mirisola; James R. Mitchell; Giuseppe Passarino; Kl Rudolph; John M. Sedivy; Gerald S. Shadel; David A. Sinclair; Stephen R. Spindler; Yousin Suh; Jan Vijg; Manlio Vinciguerra; Luigi Fontana

The workshop entitled ‘Interventions to Slow Aging in Humans: Are We Ready?’ was held in Erice, Italy, on October 8–13, 2013, to bring together leading experts in the biology and genetics of aging and obtain a consensus related to the discovery and development of safe interventions to slow aging and increase healthy lifespan in humans. There was consensus that there is sufficient evidence that aging interventions will delay and prevent disease onset for many chronic conditions of adult and old age. Essential pathways have been identified, and behavioral, dietary, and pharmacologic approaches have emerged. Although many gene targets and drugs were discussed and there was not complete consensus about all interventions, the participants selected a subset of the most promising strategies that could be tested in humans for their effects on healthspan. These were: (i) dietary interventions mimicking chronic dietary restriction (periodic fasting mimicking diets, protein restriction, etc.); (ii) drugs that inhibit the growth hormone/IGF‐I axis; (iii) drugs that inhibit the mTOR–S6K pathway; or (iv) drugs that activate AMPK or specific sirtuins. These choices were based in part on consistent evidence for the pro‐longevity effects and ability of these interventions to prevent or delay multiple age‐related diseases and improve healthspan in simple model organisms and rodents and their potential to be safe and effective in extending human healthspan. The authors of this manuscript were speakers and discussants invited to the workshop. The following summary highlights the major points addressed and the conclusions of the meeting.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Evolution in health and medicine Sackler colloquium: Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians.

Gil Atzmon; Miook Cho; Richard M. Cawthon; Temuri Budagov; Micol Katz; Xiaoman Yang; Glenn Siegel; Aviv Bergman; Derek M. Huffman; Clyde B. Schechter; Woodring E. Wright; Jerry W. Shay; Nir Barzilai; Diddahally R. Govindaraju; Yousin Suh

Telomere length in humans is emerging as a biomarker of aging because its shortening is associated with aging-related diseases and early mortality. However, genetic mechanisms responsible for these associations are not known. Here, in a cohort of Ashkenazi Jewish centenarians, their offspring, and offspring-matched controls, we studied the inheritance and maintenance of telomere length and variations in two major genes associated with telomerase enzyme activity, hTERT and hTERC. We demonstrated that centenarians and their offspring maintain longer telomeres compared with controls with advancing age and that longer telomeres are associated with protection from age-related diseases, better cognitive function, and lipid profiles of healthy aging. Sequence analysis of hTERT and hTERC showed overrepresentation of synonymous and intronic mutations among centenarians relative to controls. Moreover, we identified a common hTERT haplotype that is associated with both exceptional longevity and longer telomere length. Thus, variations in human telomerase gene that are associated with better maintenance of telomere length may confer healthy aging and exceptional longevity in humans.


Annual Review of Physiology | 2013

Genome Instability and Aging

Jan Vijg; Yousin Suh

Genome instability has long been implicated as the main causal factor in aging. Somatic cells are continuously exposed to various sources of DNA damage, from reactive oxygen species to UV radiation to environmental mutagens. To cope with the tens of thousands of chemical lesions introduced into the genome of a typical cell each day, a complex network of genome maintenance systems acts to remove damage and restore the correct base pair sequence. Occasionally, however, repair is erroneous, and such errors, as well as the occasional failure to correctly replicate the genome during cell division, are the basis for mutations and epimutations. There is now ample evidence that mutations accumulate in various organs and tissues of higher animals, including humans, mice, and flies. What is not known, however, is whether the frequency of these random changes is sufficient to cause the phenotypic effects generally associated with aging. The exception is cancer, an age-related disease caused by the accumulation of mutations and epimutations. Here, we first review current concepts regarding the relationship between DNA damage, repair, and mutation, as well as the data regarding genome alterations as a function of age. We then describe a model for how randomly induced DNA sequence and epigenomic variants in the somatic genomes of animals can result in functional decline and disease in old age. Finally, we discuss the genetics of genome instability in relation to longevity to address the importance of alterations in the somatic genome as a causal factor in aging and to underscore the opportunities provided by genetic approaches to develop interventions that attenuate genome instability, reduce disease risk, and increase life span.


PLOS Genetics | 2008

Delayed and accelerated aging share common longevity assurance mechanisms

Björn Schumacher; Ingrid van der Pluijm; Michael Moorhouse; Theodore Kosteas; Andria Rasile Robinson; Yousin Suh; Timo M. Breit; Harry van Steeg; Laura J. Niedernhofer; Wilfred van IJcken; Andrzej Bartke; Stephen R. Spindler; Jan H.J. Hoeijmakers; Gijsbertus T. J. van der Horst; George A. Garinis

Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of “survival” responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians

Gil Atzmon; Miook Cho; Richard M. Cawthon; Temuri Budagov; Micol Katz; Xiaoman Yang; Glenn Siegel; Aviv Bergman; Derek M. Huffman; Clyde B. Schechter; Woodring E. Wright; Jerry W. Shay; Nir Barzilai; Diddahally R. Govindaraju; Yousin Suh

Telomere length in humans is emerging as a biomarker of aging because its shortening is associated with aging-related diseases and early mortality. However, genetic mechanisms responsible for these associations are not known. Here, in a cohort of Ashkenazi Jewish centenarians, their offspring, and offspring-matched controls, we studied the inheritance and maintenance of telomere length and variations in two major genes associated with telomerase enzyme activity, hTERT and hTERC. We demonstrated that centenarians and their offspring maintain longer telomeres compared with controls with advancing age and that longer telomeres are associated with protection from age-related diseases, better cognitive function, and lipid profiles of healthy aging. Sequence analysis of hTERT and hTERC showed overrepresentation of synonymous and intronic mutations among centenarians relative to controls. Moreover, we identified a common hTERT haplotype that is associated with both exceptional longevity and longer telomere length. Thus, variations in human telomerase gene that are associated with better maintenance of telomere length may confer healthy aging and exceptional longevity in humans.


Pharmacogenetics and Genomics | 2007

MRP2 haplotypes confer differential susceptibility to toxic liver injury

Ji Ha Choi; Byung Min Ahn; Jihyun Yi; Ji Hyun Lee; Jeong Ho Lee; Soon Woo Nam; Chae Yoon Chon; Kwang Hyub Han; Sang Hoon Ahn; In Jin Jang; Joo Youn Cho; Yousin Suh; Mi Ook Cho; Jong Eun Lee; Kyung Hwan Kim; Min Goo Lee

Objectives Multidrug resistance protein 2 (MRP2, ABCC2) plays an important role in the biliary clearance of a wide variety of endogenous and exogenous toxic compounds. Therefore, polymorphisms and mutations in the MRP2 gene may affect individual susceptibility to hepatotoxic reactions. Methods Associations between genetic variations of MRP2 and toxic hepatitis were investigated using integrated population genetic analysis and functional molecular studies. Results Using a gene scanning method, 12 polymorphisms and mutations were found in the MRP2 gene in a Korean population. Individual variation at these sites was analyzed by conventional DNA screening in 110 control subjects and 94 patients with toxic hepatitis induced mostly by herbal remedies. When haplotypes were identified, over 85% of haploid genes belonged to the five most common haplotypes. Among these, a haplotype containing the g.−1774delG polymorphism showed a strong association with cholestatic or mixed-type hepatitis, and a haplotype containing the g.−1549G>A, g.−24C>T, c.334−49C>T, and c.3972C>T variations was associated with hepatocellular-type hepatitis. A comprehensive functional study of these sites revealed that genetic variations in the promoter of this gene are primarily responsible for the susceptibility to toxic liver injuries. The g.−1774delG variation and the combined variation of g.−1549G>A and g.−24C>T decreased MRP2 promoter activity by 36 and 39%, respectively. In addition, the promoter carrying the g.−1774delG allele showed a defect in the bile acid-induced induction of promoter activity. Conclusions These results suggest that genetic variations of MRP2 are an important predisposing factor for herbal-induced or drug-induced toxic liver injuries.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Targeted inactivation of MLL3 histone H3–Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis

Jeongkyung Lee; Pradip K. Saha; Qi-Heng Yang; Seunghee Lee; Jung Yoon Park; Yousin Suh; Soo-Kyung Lee; Lawrence Chan; Robert G. Roeder; Jae W. Lee

Activating signal cointegrator-2 (ASC-2), a transcriptional coactivator of multiple transcription factors that include the adipogenic factors peroxisome proliferator-activated receptor γ (PPARγ) and C/EBPα, is associated with histone H3-Lys-4-methyltransferase (H3K4MT) MLL3 or its paralogue MLL4 in a complex named ASCOM (ASC-2 complex). Indeed, ASC-2-null mouse embryonic fibroblasts (MEFs) have been demonstrated to be refractory to PPARγ-stimulated adipogenesis and fail to express the PPARγ-responsive adipogenic marker gene aP2. However, the specific roles for MLL3 and MLL4 in adipogenesis remain undefined. Here, we provide evidence that MLL3 plays crucial roles in adipogenesis. First, MLL3Δ/Δ mice expressing a H3K4MT-inactivated mutant of MLL3 have significantly less white fat. Second, MLL3Δ/Δ MEFs are mildly but consistently less responsive to inducers of adipogenesis than WT MEFs. Third, ASC-2, MLL3, and MLL4 are recruited to the PPARγ-activated aP2 gene during adipogenesis, and PPARγ is shown to interact directly with the purified ASCOM. Moreover, although H3K4 methylation of aP2 is readily induced in WT MEFs, it is not induced in ASC-2−/− MEFs and only partially induced in MLL3Δ/Δ MEFs. These results suggest that ASCOM-MLL3 and ASCOM-MLL4 likely function as crucial but redundant H3K4MT complexes for PPARγ-dependent adipogenesis.


Cell Metabolism | 2014

Deficient Chaperone-Mediated Autophagy in Liver Leads to Metabolic Dysregulation

Jaime L. Schneider; Yousin Suh; Ana Maria Cuervo

The activity of chaperone-mediated autophagy (CMA), a catabolic pathway for selective degradation of cytosolic proteins in lysosomes, decreases with age, but the consequences of this functional decline in vivo remain unknown. In this work, we have generated a conditional knockout mouse to selectively block CMA in liver. We have found that blockage of CMA causes hepatic glycogen depletion and hepatosteatosis. The liver phenotype is accompanied by reduced peripheral adiposity, increased energy expenditure, and altered glucose homeostasis. Comparative lysosomal proteomics revealed that key enzymes in carbohydrate and lipid metabolism are normally degraded by CMA and that impairment of their regulated degradation contributes to the metabolic abnormalities observed in CMA-defective animals. These findings highlight the involvement of CMA in regulating hepatic metabolism and suggest that the age-related decline in CMA may have a negative impact on the energetic balance in old organisms.


Mechanisms of Ageing and Development | 2012

Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: Implication to age-associated bone diseases and defects

MiJung Kim; Chan-Wha Kim; Yu Suk Choi; MinHwan Kim; Chan-Jeoung Park; Yousin Suh

Mesenchymal stem cells (MSC) have attracted considerable attention in the fields of cell and gene therapy due to their intrinsic ability to differentiate into multiple lineages. The various therapeutic applications involving MSC require initial expansion and/or differentiation in vitro prior to clinical use. However, serial passages of MSC in culture lead to decreased differentiation potential and stem cell characteristics, eventually inducing cellular aging which will limit the success of cell-based therapeutic interventions. Here we review the age-related changes that occur in MSC with a special focus on the shift of differentiation potential from osteogenic to adipogenic lineage during the MSC aging processes and how aging causes this preferential shift by oxidative stress and/or energy metabolism defect. Oxidative stress-related signals and some microRNAs affect the differentiation potential shift of MSC by directly targeting key regulatory factors such as Runx-2 or PPAR-γ, and energy metabolism pathway is involved as well. All information described here including transcription factors, microRNAs and FoxOs could be used towards development of treatment regimens for age-related bone diseases and related defects based on mutually exclusive lineage fate determination of MSC.

Collaboration


Dive into the Yousin Suh's collaboration.

Top Co-Authors

Avatar

Jan Vijg

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Brian K. Kennedy

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Miook Cho

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Nir Barzilai

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gil Atzmon

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang Chul Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Brandon Milholland

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Cagdas Tazearslan

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge