Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yousuf O. Ali is active.

Publication


Featured researches published by Yousuf O. Ali.


Journal of Biological Chemistry | 2012

Protein aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini.

Hui Ouyang; Yousuf O. Ali; M. Ravichandran; Aiping Dong; Wei Qiu; Farrell MacKenzie; Sirano Dhe-Paganon; C.H. Arrowsmith; R. Grace Zhai

Background: Misfolded protein aggregates are recruited to the aggresome by a protein complex consisting of histone deacetylase 6 (HDAC6). Results: The ubiquitin-binding domain (ZnF-UBP) of HDAC6 binds to ubiquitin C termini generated by ataxin-3. Conclusion: The exposure of ubiquitin C termini within protein aggregates enables HDAC6 recognition. Significance: This study provides the role of HDAC6 in aggresome formation and suggests a novel ubiquitin-mediated signaling pathway. The aggresome pathway is activated when proteasomal clearance of misfolded proteins is hindered. Misfolded polyubiquitinated protein aggregates are recruited and transported to the aggresome via the microtubule network by a protein complex consisting of histone deacetylase 6 (HDAC6) and the dynein motor complex. The current model suggests that HDAC6 recognizes protein aggregates by binding directly to polyubiquitinated proteins. Here, we show that there are substantial amounts of unanchored ubiquitin in protein aggregates with solvent-accessible C termini. The ubiquitin-binding domain (ZnF-UBP) of HDAC6 binds exclusively to the unanchored C-terminal diglycine motif of ubiquitin instead of conjugated polyubiquitin. The unanchored ubiquitin C termini in the aggregates are generated in situ by aggregate-associated deubiquitinase ataxin-3. These results provide structural and mechanistic bases for the role of HDAC6 in aggresome formation and further suggest a novel ubiquitin-mediated signaling pathway, where the exposure of ubiquitin C termini within protein aggregates enables HDAC6 recognition and transport to the aggresome.


Human Molecular Genetics | 2012

NMNAT suppresses Tau-induced neurodegeneration by promoting clearance of hyperphosphorylated Tau oligomers in a Drosophila model of tauopathy

Yousuf O. Ali; Kai Ruan; R. Grace Zhai

Tauopathies, including Alzheimers disease, are a group of neurodegenerative diseases characterized by abnormal tau hyperphosphorylation that leads to formation of neurofibrillary tangles. Drosophila models of tauopathy display prominent features of the human disease including compromised lifespan, impairments of learning, memory and locomotor functions and age-dependent neurodegeneration visible as vacuolization. Here, we use a Drosophila model of frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), in order to study the neuroprotective capacity of a recently identified neuronal maintenance factor, nicotinamide mononucleotide (NAD) adenylyl transferase (NMNAT), a protein that has both NAD synthase and chaperone function. NMNAT is essential for maintaining neuronal integrity under normal conditions and has been shown to protect against several neurodegenerative conditions. However, its protective role in tauopathy has not been examined. Here, we show that overexpression of NMNAT significantly suppresses both behavioral and morphological deficits associated with tauopathy by means of reducing the levels of hyperphosphorylated tau oligomers. Importantly, the protective activity of NMNAT protein is independent of its NAD synthesis activity, indicating a role for direct protein-protein interaction. Next, we show that NMNAT interacts with phosphorylated tau in vivo and promotes the ubiquitination and clearance of toxic tau species. Consequently, apoptosis activation was significantly reduced in brains overexpressing NMNAT, and neurodegeneration was suppressed. Our report on the molecular basis of NMNAT-mediated neuroprotection in tauopathies opens future investigation of this factor in other protein foldopathies.


Human Molecular Genetics | 2012

CREB-activity and nmnat2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy

M. Cecilia Ljungberg; Yousuf O. Ali; Jie Zhu; Chia Shan Wu; Kazuhiro Oka; R. Grace Zhai; Hui-Chen Lu

Tauopathies, characterized by neurofibrillary tangles (NFTs) of phosphorylated tau proteins, are a group of neurodegenerative diseases, including frontotemporal dementia and both sporadic and familial Alzheimers disease. Forebrain-specific over-expression of human tau(P301L), a mutation associated with frontotemporal dementia with parkinsonism linked to chromosome 17, in rTg4510 mice results in the formation of NFTs, learning and memory impairment and massive neuronal death. Here, we show that the mRNA and protein levels of NMNAT2 (nicotinamide mononucleotide adenylyltransferase 2), a recently identified survival factor for maintaining neuronal health in peripheral nerves, are reduced in rTg4510 mice prior to the onset of neurodegeneration or cognitive deficits. Two functional cAMP-response elements (CREs) were identified in the nmnat2 promoter region. Both the total amount of phospho-CRE binding protein (CREB) and the pCREB bound to nmnat2 CRE sites in the cortex and the hippocampus of rTg4510 mice are significantly reduced, suggesting that NMNAT2 is a direct target of CREB under physiological conditions and that tau(P301L) overexpression down-regulates CREB-mediated transcription. We found that over-expressing NMNAT2 or its homolog NMNAT1, but not NMNAT3, in rTg4510 hippocampi from 6 weeks of age using recombinant adeno-associated viral vectors significantly reduced neurodegeneration caused by tau(P301L) over-expression at 5 months of age. In summary, our studies strongly support a protective role of NMNAT2 in the mammalian central nervous system. Decreased endogenous NMNAT2 function caused by reduced CREB signaling during pathological insults may be one of underlying mechanisms for neuronal death in tauopathies.


Journal of Visualized Experiments | 2011

Assaying Locomotor, Learning, and Memory Deficits in Drosophila Models of Neurodegeneration

Yousuf O. Ali; Wilfredo Escala; Kai Ruan; R. Grace Zhai

Advances in genetic methods have enabled the study of genes involved in human neurodegenerative diseases using Drosophila as a model system1. Most of these diseases, including Alzheimers, Parkinsons and Huntingtons disease are characterized by age-dependent deterioration in learning and memory functions and movement coordination2. Here we use behavioral assays, including the negative geotaxis assay3 and the aversive phototaxic suppression assay (APS assay)4,5, to show that some of the behavior characteristics associated with human neurodegeneration can be recapitulated in flies. In the negative geotaxis assay, the natural tendency of flies to move against gravity when agitated is utilized to study genes or conditions that may hinder locomotor capacities. In the APS assay, the learning and memory functions are tested in positively-phototactic flies trained to associate light with aversive bitter taste and hence avoid this otherwise natural tendency to move toward light. Testing these trained flies 6 hours post-training is used to assess memory functions. Using these assays, the contribution of any genetic or environmental factors toward developing neurodegeneration can be easily studied in flies.


NeuroImage: Clinical | 2014

In vivo axonal transport deficits in a mouse model of fronto-temporal dementia

Tabassum Majid; Yousuf O. Ali; Deepa V. Venkitaramani; Ming-Kuei Jang; Hui-Chen Lu; Robia G. Pautler

Background Axonal transport is vital for neurons and deficits in this process have been previously reported in a few mouse models of Alzheimers disease prior to the appearance of plaques and tangles. However, it remains to be determined whether axonal transport is defective prior to the onset of neurodegeneration. The rTg4510 mouse, a fronto-temporal dementia and parkinsonism-17 (FTDP-17) tauopathy model, over-express tau-P301L mutation found in familial forms of FTDP-17, in the forebrain driven by the calcium–calmodulin kinase II promoter. This mouse model exhibits tau pathology, neurodegeneration in the forebrain, and associated behavioral deficits beginning at 4–5 months of age. Animal model rTg4510 transgenic mice were used in these studies. Mice were given 2 μL of MnCl2 in each nostril 1 h prior to Magnetic Resonance Imaging (MRI). Following MnCl2 nasal lavage, mice were imaged using Manganese enhanced Magnetic Resonance Imaging (MEMRI) Protocol with TE = 8.5 ms, TR = 504 ms, FOV = 3.0 cm, matrix size = 128 × 128 × 128, number of cycles = 15 with each cycle taking approximately 2 min, 9 s, and 24 ms using Paravision software (BrukerBioSpin, Billerica, MA). During imaging, body temperature was maintained at 37.0 °C using an animal heating system (SA Instruments, Stony Brook, NY). Data analysis Resulting images were analyzed using Paravision software. Regions of interest (ROI) within the olfactory neuronal layer (ONL) and the water phantom consisting of one pixel (ONL) and 9 pixels (water) were selected and copied across each of the 15 cycles. Signal intensities (SI) of ONL and water phantom ROIs were measured. SI values obtained for ONL were then normalized the water phantom SI values. The correlation between normalized signal intensity in the ONL and time were assessed using Prism (GraphPad Software, San Diego, CA). Results Using the MEMRI technique on 1.5, 3, 5, and 10-month old rTg4510 mice and littermate controls, we found significant axonal transport deficits present in the rTg4510 mice beginning at 3 months of age in an age-dependent manner. Using linear regression analysis, we measured rates of axonal transport at 1.5, 3, 5, and 10 months of age in rTg4510 and WT mice. Axonal transport rates were observed in rTg4510 mice at 48% of WT levels at 3 months, 40% of WT levels at 5 months, and 30% of WT levels at 10 months of age. In order to determine the point at which tau appears in the cortex, we probed for phosphorylated tau levels, and found that pSer262 is present at 3 months of age, not earlier at 1.5 months of age, but observed no pathological tau species until 6 months of age, months after the onset of the transport deficits. In addition, we saw localization of tau in the ONL at 6 months of age. Discussion In our study, we identified the presence of age-dependent axonal transport deficits beginning at 3 months of age in rTg4510 mice. We correlated these deficits at 3 months to the presence of hyperphosphorylated tau in the brain and the presence within the olfactory epithelium. We observed tau pathology not only in the soma of these neurons but also within the axons and processes of these neurons. Our characterization of axonal transport in this tauopathy model provides a functional time point that can be used for future therapeutic interventions.


PLOS Biology | 2016

NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies.

Yousuf O. Ali; Hunter M. Allen; Lei Yu; David Li-Kroeger; Dena Bakhshizadehmahmoudi; Asante Hatcher; Cristin McCabe; Jishu Xu; Nicole L. Bjorklund; Giulio Taglialatela; David A. Bennett; Philip L. De Jager; Joshua M. Shulman; Hugo J. Bellen; Hui-Chen Lu

Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is neuroprotective in numerous preclinical models of neurodegeneration. Here, we show that brain nmnat2 mRNA levels correlate positively with global cognitive function and negatively with AD pathology. In AD brains, NMNAT2 mRNA and protein levels are reduced. NMNAT2 shifts its solubility and colocalizes with aggregated Tau in AD brains, similar to chaperones, which aid in the clearance or refolding of misfolded proteins. Investigating the mechanism of this observation, we discover a novel chaperone function of NMNAT2, independent from its enzymatic activity. NMNAT2 complexes with heat shock protein 90 (HSP90) to refold aggregated protein substrates. NMNAT2’s refoldase activity requires a unique C-terminal ATP site, activated in the presence of HSP90. Furthermore, deleting NMNAT2 function increases the vulnerability of cortical neurons to proteotoxic stress and excitotoxicity. Interestingly, NMNAT2 acts as a chaperone to reduce proteotoxic stress, while its enzymatic activity protects neurons from excitotoxicity. Taken together, our data indicate that NMNAT2 exerts its chaperone or enzymatic function in a context-dependent manner to maintain neuronal health.


Journal of Biological Chemistry | 2011

Nicotinamide Mononucleotide Adenylyltransferase Is a Stress Response Protein Regulated by the Heat Shock Factor/Hypoxia-inducible Factor 1α Pathway

Yousuf O. Ali; Ryan McCormack; Andrew Darr; R. Grace Zhai

Stress responses are cellular processes essential for maintenance of cellular integrity and defense against environmental and intracellular insults. Neurodegenerative conditions are linked with inadequate stress responses. Several stress-responsive genes encoding neuroprotective proteins have been identified, and among them, the heat shock proteins comprise an important group of molecular chaperones that have neuroprotective functions. However, evidence for other critical stress-responsive genes is lacking. Recent studies on the NAD synthesis enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) have uncovered a novel neuronal maintenance and protective function against activity-, injury-, or misfolded protein-induced degeneration in Drosophila and in mammalian neurons. Here, we show that NMNAT is also a novel stress response protein required for thermotolerance and mitigation of oxidative stress-induced shortened lifespan. NMNAT is transcriptionally regulated during various stress conditions including heat shock and hypoxia through heat shock factor (HSF) and hypoxia-inducible factor 1α in vivo. HSF binds to nmnat promoter and induces NMNAT expression under heat shock. In contrast, under hypoxia, HIF1α up-regulates NMNAT indirectly through the induction of HSF. Our studies provide an in vivo mechanism for transcriptional regulation of NMNAT under stress and establish an essential role for this neuroprotective factor in cellular stress response.


EMBO Reports | 2013

Nicotinamide mononucleotide adenylyltransferase maintains active zone structure by stabilizing Bruchpilot

Shaoyun Zang; Yousuf O. Ali; Kai Ruan; R. Grace Zhai

Active zones are specialized presynaptic structures critical for neurotransmission. We show that a neuronal maintenance factor, nicotinamide mononucleotide adenylyltransferase (NMNAT), is required for maintaining active zone structural integrity in Drosophila by interacting with the active zone protein, Bruchpilot (BRP), and shielding it from activity‐induced ubiquitin–proteasome‐mediated degradation. NMNAT localizes to the peri‐active zone and interacts biochemically with BRP in an activity‐dependent manner. Loss of NMNAT results in ubiquitination, mislocalization and aggregation of BRP, and subsequent active zone degeneration. We propose that, as a neuronal maintenance factor, NMNAT specifically maintains active zone structure by direct protein–protein interaction.


PLOS ONE | 2016

Impact of Genetic Reduction of NMNAT2 on Chemotherapy-Induced Losses in Cell Viability In Vitro and Peripheral Neuropathy In Vivo

Richard A. Slivicki; Yousuf O. Ali; Hui-Chen Lu; Andrea G. Hohmann

Nicotinamide mononucleotide adenylyl transferases (NMNATs) are essential neuronal maintenance factors postulated to preserve neuronal function and protect against axonal degeneration in various neurodegenerative disease states. We used in vitro and in vivo approaches to assess the impact of NMNAT2 reduction on cellular and physiological functions induced by treatment with a vinca alkaloid (vincristine) and a taxane-based (paclitaxel) chemotherapeutic agent. NMNAT2 null (NMNAT2-/-) mutant mice die at birth and cannot be used to probe functions of NMNAT2 in adult animals. Nonetheless, primary cortical cultures derived from NMNAT2-/- embryos showed reduced cell viability in response to either vincristine or paclitaxel treatment whereas those derived from NMNAT2 heterozygous (NMNAT2+/-) mice were preferentially sensitive to vincristine-induced degeneration. Adult NMNAT2+/- mice, which survive to adulthood, exhibited a 50% reduction of NMNAT2 protein levels in dorsal root ganglia relative to wildtype (WT) mice with no change in levels of other NMNAT isoforms (NMNAT1 or NMNAT3), NMNAT enzyme activity (i.e. NAD/NADH levels) or microtubule associated protein-2 (MAP2) or neurofilament protein levels. We therefore compared the impact of NMNAT2 knockdown on the development and maintenance of chemotherapy-induced peripheral neuropathy induced by vincristine and paclitaxel treatment using NMNAT2+/- and WT mice. NMNAT2+/- did not differ from WT mice in either the development or maintenance of either mechanical or cold allodynia induced by either vincristine or paclitaxel treatment. Intradermal injection of capsaicin, the pungent ingredient in hot chili peppers, produced equivalent hypersensitivity in NMNAT2+/- and WT mice receiving vehicle in lieu of paclitaxel. Capsaicin-evoked hypersensitivity was enhanced by prior paclitaxel treatment but did not differ in either NMNAT2+/- or WT mice. Thus, capsaicin failed to unmask differences in nociceptive behaviors in either paclitaxel-treated or paclitaxel-untreated NMNAT2+/- and WT mice. Moreover, no differences in motor behavior were detected between genotypes in the rotarod test. Our studies do not preclude the possibility that complete knockout of NMNAT2 in a conditional knockout animal could unmask a role for NMNAT2 in protection against detrimental effects of chemotherapeutic treatment.


The Journal of Neuroscience | 2015

Progressive Functional Impairments of Hippocampal Neurons in a Tauopathy Mouse Model

Sarah M. Ciupek; Jingheng Cheng; Yousuf O. Ali; Hui-Chen Lu; Daoyun Ji

The age-dependent progression of tau pathology is a major characteristic of tauopathies, including Alzheimers disease (AD), and plays an important role in the behavioral phenotypes of AD, including memory deficits. Despite extensive molecular and cellular studies on tau pathology, it remains to be determined how it alters the neural circuit functions underlying learning and memory in vivo. In rTg4510 mice, a Tau-P301L tauopathy model, hippocampal place fields that support spatial memories are abnormal at old age (7–9 months) when tau tangles and neurodegeneration are extensive. However, it is unclear how the abnormality in the hippocampal circuit function arises and progresses with the age-dependent progression of tau pathology. Here we show that in young (2–4 months of age) rTg4510 mice, place fields of hippocampal CA1 cells are largely normal, with only subtle differences from those of age-matched wild-type control mice. Second, high-frequency ripple oscillations of local field potentials in the hippocampal CA1 area are significantly reduced in young rTg4510 mice, and even further deteriorated in old rTg4510 mice. The ripple reduction is associated with less bursty firing and altered synchrony of CA1 cells. Together, the data indicate that deficits in ripples and neuronal synchronization occur before overt deficits in place fields in these mice. The results reveal a tau-pathology-induced progression of hippocampal functional changes in vivo.

Collaboration


Dive into the Yousuf O. Ali's collaboration.

Top Co-Authors

Avatar

R. Grace Zhai

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hui-Chen Lu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea G. Hohmann

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asante Hatcher

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chia Shan Wu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge