Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yousuke Takahama is active.

Publication


Featured researches published by Yousuke Takahama.


Current Biology | 2001

Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells

Masako Tada; Yousuke Takahama; Kuniya Abe; Norio Nakatsuji; Takashi Tada

The resetting of a somatic epigenotype to a totipotential state has been demonstrated by successful animal cloning, via transplantation of somatic nuclei into enucleated oocytes. We have established an experimental system, which reproduces the nuclear reprogramming of somatic cells in vitro by fusing adult thymocytes with embryonic stem (ES) cells. Analysis of the lymphoid-cell-specific V-(D)-J DNA rearrangement of the T cell receptor and immunoglobin genes shows that the ES cells have hybridized with differentiated cells. In these ES cell hybrids, the inactivated X chromosome derived from a female thymocyte adopts some characteristics of an active X chromosome, including early replication timing and unstable Xist transcription. We also found that an Oct4-GFP transgene, which is normally repressed in thymocytes, is reactivated 48 hr after cell fusion. The pluripotency of the ES-thymocyte hybrid cells is shown in vivo, since they contribute to all three primary germ layers of chimeric embryos. The somatic DNA methylation pattern of the imprinted H19 and Igf2r genes is maintained in these hybrids, unlike hybrids between ES and EG (embryonic germ) cells in which the differential methylation is erased. Thus, ES cells have the capacity to reset certain aspects of the epigenotype of somatic cells to those of ES cells.


Nature Reviews Immunology | 2006

Journey through the thymus: stromal guides for T-cell development and selection

Yousuke Takahama

Lympho–stromal interactions in multiple microenvironments within the thymus have a crucial role in the regulation of T-cell development and selection. Recent studies have implicated that chemokines that are produced by thymic stromal cells have a pivotal role in positioning developing T cells within the thymus. In this Review, I discuss the importance of stroma-derived chemokines in guiding the traffic of developing thymocytes, with an emphasis on the processes of cortex-to-medulla migration and T-cell-repertoire selection, including central tolerance.


Science | 2007

Regulation of CD8+ T Cell Development by Thymus-Specific Proteasomes

Shigeo Murata; Katsuhiro Sasaki; Toshihiko Kishimoto; Shin-ichiro Niwa; Hidemi Hayashi; Yousuke Takahama; Keiji Tanaka

Proteasomes are responsible for generating peptides presented by the class I major histocompatibility complex (MHC) molecules of the immune system. Here, we report the identification of a previously unrecognized catalytic subunit called β5t. β5t is expressed exclusively in cortical thymic epithelial cells, which are responsible for the positive selection of developing thymocytes. Although the chymotrypsin-like activity of proteasomes is considered to be important for the production of peptides with high affinities for MHC class I clefts, incorporation of β5t into proteasomes in place of β5 or β5i selectively reduces this activity. We also found that β5t-deficient mice displayed defective development of CD8+ T cells in the thymus. Our results suggest a key role for β5t in generating the MHC class I–restricted CD8+ T cell repertoire during thymic selection.


Immunity | 2008

The Tumor Necrosis Factor Family Receptors RANK and CD40 Cooperatively Establish the Thymic Medullary Microenvironment and Self-Tolerance

Taishin Akiyama; Yusuke Shimo; Hiromi Yanai; Junwen Qin; Daisuke Ohshima; Yuya Maruyama; Yukiko Asaumi; Juli Kitazawa; Hiroshi Takayanagi; Josef M. Penninger; Mitsuru Matsumoto; Takeshi Nitta; Yousuke Takahama; Jun-ichiro Inoue

Medullary thymic epithelial cells (mTECs) establish T cell self-tolerance through the expression of autoimmune regulator (Aire) and peripheral tissue-specific self-antigens. However, signals underlying mTEC development remain largely unclear. Here, we demonstrate crucial regulation of mTEC development by receptor activator of NF-kappaB (RANK) and CD40 signals. Whereas only RANK signaling was essential for mTEC development during embryogenesis, in postnatal mice, cooperation between CD40 and RANK signals was required for mTEC development to successfully establish the medullary microenvironment. Ligation of RANK or CD40 on fetal thymic stroma in vitro induced mTEC development in a tumor necrosis factor-associated factor 6 (TRAF6)-, NF-kappaB inducing kinase (NIK)-, and IkappaB kinase beta (IKKbeta)-dependent manner. These results show that developmental-stage-dependent cooperation between RANK and CD40 promotes mTEC development, thereby establishing self-tolerance.


Journal of Experimental Medicine | 2004

CCR7 Signals Are Essential for Cortex–Medulla Migration of Developing Thymocytes

Tomoo Ueno; Fumi Saito; Daniel Gray; Sachiyo Kuse; Kunio Hieshima; Hideki Nakano; Terutaka Kakiuchi; Martin Lipp; Richard L. Boyd; Yousuke Takahama

Upon TCR-mediated positive selection, developing thymocytes relocate within the thymus from the cortex to the medulla for further differentiation and selection. However, it is unknown how this cortex–medulla migration of thymocytes is controlled and how it controls T cell development. Here we show that in mice deficient for CCR7 or its ligands mature single-positive thymocytes are arrested in the cortex and do not accumulate in the medulla. These mutant mice are defective in forming the medullary region of the thymus. Thymic export of T cells in these mice is compromised during the neonatal period but not in adulthood. Thymocytes in these mice show no defects in maturation, survival, and negative selection to ubiquitous antigens. TCR engagement of immature cortical thymocytes elevates the cell surface expression of CCR7. These results indicate that CCR7 signals are essential for the migration of positively selected thymocytes from the cortex to the medulla. CCR7-dependent cortex–medulla migration of thymocytes plays a crucial role in medulla formation and neonatal T cell export but is not essential for maturation, survival, negative selection, and adult export of thymocytes.


Immunity | 2008

The Cytokine RANKL Produced by Positively Selected Thymocytes Fosters Medullary Thymic Epithelial Cells that Express Autoimmune Regulator

Yu Hikosaka; Takeshi Nitta; Izumi Ohigashi; Kouta Yano; Naozumi Ishimaru; Yoshio Hayashi; Mitsuru Matsumoto; Koichi Matsuo; Josef M. Penninger; Hiroshi Takayanagi; Yoshifumi Yokota; Hisakata Yamada; Yasunobu Yoshikai; Jun-ichiro Inoue; Taishin Akiyama; Yousuke Takahama

The thymic medulla provides a microenvironment where medullary thymic epithelial cells (mTECs) express autoimmune regulator and diverse tissue-restricted genes, contributing to launching self-tolerance. Positive selection is essential for thymic medulla formation via a previously unknown mechanism. Here we show that the cytokine RANK ligand (RANKL) was produced by positively selected thymocytes and regulated the cellularity of mTEC by interacting with RANK and osteoprotegerin. Forced expression of RANKL restored thymic medulla in mice lacking positive selection, whereas RANKL perturbation impaired medulla formation. These results indicate that RANKL produced by positively selected thymocytes is responsible for fostering thymic medulla formation, thereby establishing central tolerance.


Journal of Immunology | 2005

Development of Autoimmunity against Transcriptionally Unrepressed Target Antigen in the Thymus of Aire-Deficient Mice

Noriyuki Kuroda; Tasuku Mitani; Naoki Takeda; Naozumi Ishimaru; Rieko Arakaki; Yoshio Hayashi; Yoshimi Bando; Keisuke Izumi; Takeshi Takahashi; Takashi Nomura; Shimon Sakaguchi; Tomoo Ueno; Yousuke Takahama; Daisuke Uchida; Shijie Sun; Fumiko Kajiura; Yasuhiro Mouri; Hongwei Han; Akemi Matsushima; Gen Yamada; Mitsuru Matsumoto

Autoimmune regulator (AIRE) gene mutation is responsible for the development of organ-specific autoimmune disease with monogenic autosomal recessive inheritance. Although Aire has been considered to regulate the elimination of autoreactive T cells through transcriptional control of tissue-specific Ags in thymic epithelial cells, other mechanisms of AIRE-dependent tolerance remain to be investigated. We have established Aire-deficient mice and examined the mechanisms underlying the breakdown of self-tolerance. The production and/or function of immunoregulatory T cells were retained in the Aire-deficient mice. The mice developed Sjögren’s syndrome-like pathologic changes in the exocrine organs, and this was associated with autoimmunity against a ubiquitous protein, α-fodrin. Remarkably, transcriptional expression of α-fodrin was retained in the Aire-deficient thymus. These results suggest that Aire regulates the survival of autoreactive T cells beyond transcriptional control of self-protein expression in the thymus, at least against this ubiquitous protein. Rather, Aire may regulate the processing and/or presentation of self-proteins so that the maturing T cells can recognize the self-Ags in a form capable of efficiently triggering autoreactive T cells. With the use of inbred Aire-deficient mouse strains, we also demonstrate the presence of some additional factor(s) that determine the target-organ specificity of the autoimmune disease caused by Aire deficiency.


Immunity | 1998

Differential roles of ERK and p38 MAP kinase pathways in positive and negative selection of T lymphocytes

Takehiko Sugawara; Tetsuo Moriguchi; Eisuke Nishida; Yousuke Takahama

Clonal selection of T lymphocytes is essential for establishing self/non-self discrimination of immune recognition. It is known that cell surface signals such as avidity and valency of TCR-ligand interactions influence the fate of individual thymocytes, founding a primary repertoire of T cells. However, intracellular signals that govern positive and negative selection in the thymus have been unclear. The present study using the retroviral gene transfer technique shows that MKK1 activation in developing T cells is sufficient for providing positive selection signals. We also show that the MKK6-p38 signaling pathway is critically involved in inducing negative selection of thymocytes. These results suggest that intracellular signals through different MAP kinase cascades selectively guide positive and negative selection of T lymphocytes.


Journal of Immunology | 2000

A role for pref-1 and HES-1 in thymocyte development.

Midori Kaneta; Masatake Osawa; Mitsujiro Osawa; Kazuhiro Sudo; Hiromitsu Nakauchi; Andrew G. Farr; Yousuke Takahama

T lymphocyte development requires a series of interactions between developing thymocytes and thymic epithelial (TE) cells. In this paper we show that TE cells in the developing thymus express Pref-1, a Delta-like cell-surface molecule. In fetal thymus organ cultures (FTOC), thymocyte cellularity was increased by the exogenous dimeric Pref-1 fusion protein, but was reduced by the soluble Pref-1 monomer or anti-Pref-1 Ab. Dimeric Pref-1 in FTOC also increased thymocyte expression of the HES-1 transcription factor. Thymocyte cellularity was increased in FTOC repopulated with immature thymocytes overexpressing HES-1, whereas FTOC from HES-1-deficient mice were hypocellular and unresponsive to the Pref-1 dimer. We detected no effects of either Pref-1 or HES-1 on developmental choice among thymocyte lineages. These results indicate that Pref-1 expressed by TE cells and HES-1 expressed by thymocytes are critically involved in supporting thymocyte cellularity.


Trends in Immunology | 2012

Thymic epithelial cells: working class heroes for T cell development and repertoire selection

Graham Anderson; Yousuke Takahama

The thymus represents an epithelial-mesenchymal tissue, anatomically structured into discrete cortical and medullary regions that contain phenotypically and functionally distinct stromal cells, as well as thymocytes at defined stages of maturation. The stepwise progression of thymocyte development seems to require serial migration through these distinct thymic regions, where interactions with cortical thymic epithelial cell (cTEC) and medullary thymic epithelial cell (mTEC) subsets take place. Recent work on TEC subsets provides insight into T cell development and selection, such as the importance of tumour necrosis factor (TNF) receptor superfamily members in thymus medulla development, and the specialised antigen processing/presentation capacity of the thymic cortex for positive selection. Here, we summarise current knowledge on the development and function of the thymic microenvironment, paying particular attention to the cortical and medullary epithelial compartments.

Collaboration


Dive into the Yousuke Takahama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoo Ueno

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar

Alfred Singer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fumi Saito

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge