Yu Hisano
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu Hisano.
Science | 2009
Atsuo Kawahara; Tsuyoshi Nishi; Yu Hisano; Hajime Fukui; Akihito Yamaguchi; Naoki Mochizuki
Sphingosine-1-phosphate (S1P) is a secreted lipid mediator that functions in vascular development; however, it remains unclear how S1P secretion is regulated during embryogenesis. We identified a zebrafish mutant, ko157, that displays cardia bifida (two hearts) resembling that in the S1P receptor-2 mutant. A migration defect of myocardial precursors in the ko157 mutant is due to a mutation in a multipass transmembrane protein, Spns2, and can be rescued by S1P injection. We show that the export of S1P from cells requires Spns2. spns2 is expressed in the extraembryonic tissue yolk syncytial layer (YSL), and the introduction of spns2 mRNA in the YSL restored the cardiac defect in the ko157 mutant. Thus, Spns2 in the YSL functions as a S1P transporter in S1P secretion, thereby regulating myocardial precursor migration.
PLOS ONE | 2012
Yu Hisano; Naoki Kobayashi; Akihito Yamaguchi; Tsuyoshi Nishi
Sphingosine-1-phosphate (S1P), a sphingolipid metabolite that is produced inside the cells, regulates a variety of physiological and pathological responses via S1P receptors (S1P1–5). Signal transduction between cells consists of three steps; the synthesis of signaling molecules, their export to the extracellular space and their recognition by receptors. An S1P concentration gradient is essential for the migration of various cell types that express S1P receptors, such as lymphocytes, pre-osteoclasts, cancer cells and endothelial cells. To maintain this concentration gradient, plasma S1P concentration must be at a higher level. However, little is known about the molecular mechanism by which S1P is supplied to extracellular environments such as blood plasma. Here, we show that SPNS2 functions as an S1P transporter in vascular endothelial cells but not in erythrocytes and platelets. Moreover, the plasma S1P concentration of SPNS2-deficient mice was reduced to approximately 60% of wild-type, and SPNS2-deficient mice were lymphopenic. Our results demonstrate that SPNS2 is the first physiological S1P transporter in mammals and is a key determinant of lymphocyte egress from the thymus.
Scientific Reports | 2015
Yukiko Kimura; Yu Hisano; Atsuo Kawahara; Shin-ichi Higashijima
The type II bacterial CRISPR/Cas9 system is rapidly becoming popular for genome-engineering due to its simplicity, flexibility, and high efficiency. Recently, targeted knock-in of a long DNA fragment via homology-independent DNA repair has been achieved in zebrafish using CRISPR/Cas9 system. This raised the possibility that knock-in transgenic zebrafish could be efficiently generated using CRISPR/Cas9. However, how widely this method can be applied for the targeting integration of foreign genes into endogenous genomic loci is unclear. Here, we report efficient generation of knock-in transgenic zebrafish that have cell-type specific Gal4 or reporter gene expression. A donor plasmid containing a heat-shock promoter was co-injected with a short guide RNA (sgRNA) targeted for genome digestion, a sgRNA targeted for donor plasmid digestion, and Cas9 mRNA. We have succeeded in establishing stable knock-in transgenic fish with several different constructs for 4 genetic loci at a frequency being exceeding 25%. Due to its simplicity, design flexibility, and high efficiency, we propose that CRISPR/Cas9-mediated knock-in will become a standard method for the generation transgenic zebrafish.
Scientific Reports | 2015
Yu Hisano; Tetsushi Sakuma; Shota Nakade; Rie Ohga; Satoshi Ota; Hitoshi Okamoto; Takashi Yamamoto; Atsuo Kawahara
The CRISPR/Cas9 system provides a powerful tool for genome editing in various model organisms, including zebrafish. The establishment of targeted gene-disrupted zebrafish (knockouts) is readily achieved by CRISPR/Cas9-mediated genome modification. Recently, exogenous DNA integration into the zebrafish genome via homology-independent DNA repair was reported, but this integration contained various mutations at the junctions of genomic and integrated DNA. Thus, precise genome modification into targeted genomic loci remains to be achieved. Here, we describe efficient, precise CRISPR/Cas9-mediated integration using a donor vector harbouring short homologous sequences (10–40 bp) flanking the genomic target locus. We succeeded in integrating with high efficiency an exogenous mCherry or eGFP gene into targeted genes (tyrosinase and krtt1c19e) in frame. We found the precise in-frame integration of exogenous DNA without backbone vector sequences when Cas9 cleavage sites were introduced at both sides of the left homology arm, the eGFP sequence and the right homology arm. Furthermore, we confirmed that this precise genome modification was heritable. This simple method enables precise targeted gene knock-in in zebrafish.
Journal of Biological Chemistry | 2011
Yu Hisano; Naoki Kobayashi; Atsuo Kawahara; Akihito Yamaguchi; Tsuyoshi Nishi
FTY720 is a novel immunomodulating drug that can be phosphorylated inside cells; its phosphorylated form, FTY720-P, binds to a sphingosine 1-phosphate (S1P) receptor, S1P(1), and inhibits lymphocyte egress into the circulating blood. Although the importance of its pharmacological action has been well recognized, little is known about how FTY720-P is released from cells after its phosphorylation inside cells. Previously, we showed that zebrafish Spns2 can act as an S1P exporter from cells and is essential for zebrafish heart formation. Here, we demonstrate that human SPNS2 can transport several S1P analogues, including FTY720-P. Moreover, FTY720-P is transported by SPNS2 through the same pathway as S1P. This is the first identification of an FTY720-P transporter in cells; this finding is important for understanding FTY720 metabolism.FTY720 is a novel immunomodulating drug that can be phosphorylated inside cells; its phosphorylated form, FTY720-P, binds to a sphingosine 1-phosphate (S1P) receptor, S1P1, and inhibits lymphocyte egress into the circulating blood. Although the importance of its pharmacological action has been well recognized, little is known about how FTY720-P is released from cells after its phosphorylation inside cells. Previously, we showed that zebrafish Spns2 can act as an S1P exporter from cells and is essential for zebrafish heart formation. Here, we demonstrate that human SPNS2 can transport several S1P analogues, including FTY720-P. Moreover, FTY720-P is transported by SPNS2 through the same pathway as S1P. This is the first identification of an FTY720-P transporter in cells; this finding is important for understanding FTY720 metabolism.
Genes to Cells | 2013
Satoshi Ota; Yu Hisano; Michiko Muraki; Kazuyuki Hoshijima; Timothy J. Dahlem; David Grunwald; Yasushi Okada; Atsuo Kawahara
The heteroduplex mobility assay (HMA) is widely used to characterize strain variants of human viruses. To determine whether it can detect small sequence differences in homologous templates, we constructed a series of deletion constructs (1–10 bp deletions) in the multiple cloning site (MCS) of pBluescript II. After PCR amplification of the MCS using a mixture of wild‐type and one of the deletion constructs, the resulting PCR amplicons were electrophoresed using 15% polyacrylamide gels. Two types of heteroduplexes exhibited retarded electrophoretic migration compared with individual homoduplexes. Therefore, we applied this HMA to detect transcription activator‐like effector nucleases (TALEN)‐induced insertion and/or deletion (indel) mutations at an endogenous locus. We found that TALEN in vivo activity was easily estimated by the degree of multiple HMA profiles derived from TALEN‐injected F0 embryos. Furthermore, TALEN‐injected F0 founder fish produced several unique HMA profiles in F1 embryos. Sequence analysis confirmed that the different HMA profiles contained distinct indel mutations. Thus, HMA is a rapid and sensitive analytical method for the detection of the TALEN‐mediated genome modifications.
Genes to Cells | 2014
Satoshi Ota; Yu Hisano; Yoshiya Ikawa; Atsuo Kawahara
The type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated (Cas) system, which is an adaptive immune system of bacteria, has become a powerful tool for genome editing in various model organisms. Here, we demonstrate multiple genome modifications mediated by CRISPR/Cas9 in zebrafish (Danio rerio). Multiple genes including golden/gol and tyrosinase/tyr, which are involved in pigment formation, and s1pr2 and spns2, which are involved in cardiac development, were disrupted with insertion and/or deletion (indel) mutations introduced by the co‐injection of multiple guide RNAs (gRNAs) and the nuclease Cas9 mRNA. We simultaneously observed two distinct phenotypes, such as, the two hearts phenotype and the hypopigmentation of skin melanophores and the retinal pigment epithelium, in the injected F0 embryos. Additionally, we detected the targeted deletion and inversion genes as a 7.1‐kb fragment between the two distinct spns2 targeted sites together with indel mutations. Conversely, chromosomal translocations among five target loci were not detected. Therefore, we confirmed that the CRISPR/Cas9‐induced indel mutations and a locus‐specific deletion were heritable in F1 embryos. To screen founders, we improved heteroduplex mobility assay (HMA) for simultaneously detecting indel mutations in different target loci. The results suggest that the multi‐locus HMA is a powerful tool for identification of multiple genome modifications mediated by the CRISPR/Cas9 system.
Biochimica et Biophysica Acta | 2014
Tsuyoshi Nishi; Naoki Kobayashi; Yu Hisano; Atsuo Kawahara; Akihito Yamaguchi
Sphingosine 1-phosphate (S1P) is a lipid mediator that plays important roles in diverse cellular functions such as cell proliferation, differentiation and migration. S1P is synthesized inside the cells and subsequently released to the extracellular space, where it binds to specific receptors that are located on the plasma membranes of target cells. Accumulating recent evidence suggests that S1P transporters including SPNS2 mediate S1P release from the cells and are involved in the physiological functions of S1P. In this review, we discuss recent advances in our understanding of the mechanism and physiological functions of S1P transporters. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Development Growth & Differentiation | 2014
Yu Hisano; Satoshi Ota; Atsuo Kawahara
Zebrafish is a model vertebrate suitable for genetic analysis. Forward genetic analysis via chemical mutagenesis screening has established a variety of zebrafish mutants that are defective in various types of organogenesis, and the genes responsible for the individual mutants have been identified from genome mapping. On the other hand, reverse genetic analysis via targeted gene disruption using embryonic stem (ES) cells (e.g., knockout mouse) can uncover gene functions by investigating the phenotypic effects. However, this approach is mostly limited to mice among the vertebrate models because of the difficulty in establishing ES cells. Recently, new gene targeting technologies, such as the transcription activator‐like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems, have been developed: that can directly introduce genome modifications at the targeted genomic locus. Here, we summarize these new and powerful genome editing techniques for the study of zebrafish.
Biology Open | 2013
Yu Hisano; Satoshi Ota; Kazuharu Arakawa; Michiko Muraki; Nobuaki Kono; Kazuki Oshita; Tetsushi Sakuma; Masaru Tomita; Takashi Yamamoto; Yasushi Okada; Atsuo Kawahara
Summary Artificially designed nucleases such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) can induce a targeted DNA double-strand break at the specific target genomic locus, leading to the frameshift-mediated gene disruption. However, the assays for their activity on the endogenous genomic loci remain limited. Herein, we describe a versatile modified lacZ assay to detect frameshifts in the nuclease target site. Short fragments of the genome DNA at the target or putative off-target loci were amplified from the genomic DNA of TALEN-treated or control embryos, and were inserted into the lacZ&agr; sequence for the conventional blue–white selection. The frequency of the frameshifts in the fragment can be estimated from the numbers of blue and white colonies. Insertions and/or deletions were easily determined by sequencing the plasmid DNAs recovered from the positive colonies. Our technique should offer broad application to the artificial nucleases for genome editing in various types of model organisms.