Yu Moriguchi
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu Moriguchi.
Biomaterials | 2013
Yu Moriguchi; Kosuke Tateishi; Wataru Ando; Kazunori Shimomura; Yasukazu Yonetani; Yoshinari Tanaka; Keisuke Kita; David A. Hart; Alberto Gobbi; Konsei Shino; Hideki Yoshikawa; Norimasa Nakamura
The menisci of the knee are fibro-cartilaginous tissues and play important roles in the joint, and the loss of the meniscus predisposes the knee to degenerative changes. However, the menisci have limited healing potential due to the paucity of vascularity. The purpose of the present study was to test the feasibility of a scaffold-free tissue-engineered construct (TEC) derived from synovial mesenchymal stem cells (MSCs) to repair incurable meniscal lesions. Porcine synovial MSCs were cultured in monolayers at high density in the presence of ascorbic acid followed by the suspension culture to develop a three-dimensional cell/matrix construct (TEC). A 4-mm cylindrical defect was created bilaterally in the medial meniscus of skeletally mature miniature pigs. The defects were implanted with an allogenic TEC or were left empty. After 6 months, the TEC-treated defects were consistently repaired by a fibro-cartilaginous tissue with good tissue integration to the adjacent host meniscal tissue, while the untreated were either partially or not repaired. The ratio of Safranin O positive area within the central body of the meniscus adjacent to the original defect was significantly higher in the TEC-treated group than in the control group. Moreover, TEC treatment significantly reduced the size and severity of post-traumatic chondral lesions on the tibial plateau. These results suggest that the TEC could be a promising stem cell-based implant to repair meniscal lesions with preventive effects from meniscal body degeneration and the development of post-traumatic arthritis.
Tissue Engineering Part B-reviews | 2014
Kazunori Shimomura; Yu Moriguchi; Christopher D. Murawski; Hideki Yoshikawa; Norimasa Nakamura
The management of osteoarthritis (OA) remains challenging and controversial. Although several clinical options exist for the treatment of OA, regeneration of the damaged articular cartilage has proved difficult due to the limited healing capacity. With the advancements in tissue engineering and cell-based technologies over the past decade, new therapeutic options for patients with osteochondral lesions potentially exist. This review will focus on the feasibility of tissue-engineered biphasic scaffolds, which can mimic the native osteochondral complex, for osteochondral repair and highlight the recent development of these techniques toward tissue regeneration. Moreover, basic anatomy, strategy for osteochondral repair, the design and fabrication methods of scaffolds, as well as the choice of cells, growth factor, and materials will be discussed. Specifically, we focus on the latest preclinical animal studies using large animals and clinical trials with high clinical relevance. In turn, this will facilitate an understanding of the latest trends in osteochondral repair and contribute to the future application of such clinical therapies in patients with OA.
Global Spine Journal | 2016
Yu Moriguchi; Marjan Alimi; Thamina Khair; George Manolarakis; Connor Berlin; Lawrence J. Bonassar; Roger Härtl
Study Design Literature review. Objective Degenerative disk disease (DDD) has a negative impact on quality of life and is a major cause of morbidity worldwide. There has been a growing interest in the biological repair of DDD by both researchers and clinicians alike. To generate an overview of the recent progress in reparative strategies for the treatment of DDD highlighting their promises and limitations, a comprehensive review of the current literature was performed elucidating data from in vivo animal and clinical studies. Methods Articles and abstracts available in electronic databases of PubMed, Web of Science, and Google Scholar as of December 2014 were reviewed. Additionally, data from unpublished, ongoing clinical trials was retrieved from clinicaltrials.gov and available abstracts from research forums. Data was extracted from the most recent in vivo animal or clinical studies involving any of the following: (1) treatment with biomolecules, cells, or tissue-engineered constructs and (2) annulus fibrosus repair. Results Seventy-five articles met the inclusion criteria for review. Among these, 17 studies involved humans; 37, small quadrupeds; and 21, large quadrupeds. Findings from all treatments employed demonstrated improvement either in regenerative capacity or in pain attenuation, with the exception of one clinical study. Conclusion Published clinical studies on cell therapy have reported encouraging results in the treatment of DDD and resultant back pain. We expect new data to emerge in the near future as treatments for DDD continue to evolve in parallel to our greater understanding of disk health and pathology.
Cartilage | 2015
Kazunori Shimomura; Wataru Ando; Yu Moriguchi; Norihiko Sugita; Yukihiko Yasui; Kota Koizumi; Hiromichi Fujie; David A. Hart; Hideki Yoshikawa; Norimasa Nakamura
Because of its limited healing capacity, treatments for articular cartilage injuries are still challenging. Since the first report by Brittberg, autologous chondrocyte implantation has been extensively studied. Recently, as an alternative for chondrocyte-based therapy, mesenchymal stem cell–based therapy has received considerable research attention because of the relative ease in handling for tissue harvest, and subsequent cell expansion and differentiation. This review summarizes latest development of stem cell therapies in cartilage repair with special attention to scaffold-free approaches.
Acta Biomaterialia | 2015
Peter Grunert; Brandon Borde; Sara B. Towne; Yu Moriguchi; Katherine Hudson; Lawrence J. Bonassar; Roger Härtl
Open annular defects compromise the ability of the annulus fibrosus to contain nuclear tissue in the disc space, and therefore lead to disc herniation with subsequent degenerative changes to the entire intervertebral disc. This study reports the use of riboflavin crosslinked high-density collagen gel for the repair of annular defects in a needle-punctured rat-tail model. High-density collagen has increased stiffness and greater hydraulic permeability than conventional low-density gels; riboflavin crosslinking further increases these properties. This study found that treating annular defects with crosslinked high-density collagen inhibited the progression of disc degeneration over 18 weeks compared to untreated control discs. Histological sections of FITC-labeled collagen gel revealed an early tight attachment to host annular tissue. The gel was subsequently infiltrated by host fibroblasts which remodeled it into a fibrous cap that bridged the outer disrupted annular fibers and partially repaired the defect. This repair tissue enhanced retention of nucleus pulposus tissue, maintained physiological disc hydration, and preserved hydraulic permeability, according to MRI, histological, and mechanical assessments. Degenerative changes were partially reversed in treated discs, as indicated by an increase in nucleus pulposus size and hydration between weeks 5 and 18. The collagen gel appeared to work as an instant sealant and by enhancing the intrinsic healing capabilities of the host tissue.
BioMed Research International | 2016
Xiaofeng Lian; Rodrigo Navarro-Ramirez; Connor Berlin; Ajit Jada; Yu Moriguchi; Qiwei Zhang; Roger Härtl
Introduction. A new generation of iCT scanner, Airo®, has been introduced. The purpose of this study is to describe how Airo facilitates minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF). Method. We used the latest generation of portable iCT in all cases without the assistance of K-wires. We recorded the operation time, number of scans, and pedicle screw accuracy. Results. From January 2015 to December 2015, 33 consecutive patients consisting of 17 men and 16 women underwent single-level or two-level MIS-TLIF operations in our institution. The ages ranged from 23 years to 86 years (mean, 66.6 years). We treated all the cases in MIS fashion. In four cases, a tubular laminectomy at L1/2 was performed at the same time. The average operation time was 192.8 minutes and average time of placement per screw was 2.6 minutes. No additional fluoroscopy was used. Our screw accuracy rate was 98.6%. No complications were encountered. Conclusions. Airo iCT MIS-TLIF can be used for initial planning of the skin incision, precise screw, and cage placement, without the need for fluoroscopy. “Total navigation” (complete intraoperative 3D navigation without fluoroscopy) can be achieved by combining Airo navigation with navigated guide tubes for screw placement.
PLOS ONE | 2017
Yu Moriguchi; Jorge Mojica-Santiago; Peter Grunert; Brenton Pennicooke; Connor Berlin; Thamina Khair; Rodrigo Navarro-Ramirez; Rodolfo J. Ricart Arbona; Joseph Nguyen; Roger Härtl; Lawrence J. Bonassar; Giovanni Grasso
The most common reason that adults in the United States see their physician is lower back or neck pain secondary to degenerative disc disease. To date, approaches to treat degenerative disc disease are confined to purely mechanical devices designed to either eliminate or enable flexibility of the diseased motion segment. Tissue engineered intervertebral discs (TE-IVDs) have been proposed as an alternative approach and have shown promise in replacing native IVD in the rodent tail spine. Here we demonstrate the efficacy of our TE-IVDs in the canine cervical spine. TE-IVD components were constructed using adult canine annulus fibrosis and nucleus pulposus cells seeded into collagen and alginate hydrogels, respectively. Seeded gels were formed into a single disc unit using molds designed from the geometry of the canine spine. Skeletally mature beagles underwent discectomy with whole IVD resection at levels between C3/4 and C6/7, and were then divided into two groups that received only discectomy or discectomy followed by implantation of TE-IVD. Stably implanted TE-IVDs demonstrated significant retention of disc height and physiological hydration compared to discectomy control. Both 4-week and 16-week histological assessments demonstrated chondrocytic cells surrounded by proteoglycan-rich matrices in the NP and by fibrocartilaginous matrices in the AF portions of implanted TE-IVDs. Integration into host tissue was confirmed over 16 weeks without any signs of immune reaction. Despite the significant biomechanical demands of the beagle cervical spine, our stably implanted TE-IVDs maintained their position, structure and hydration as well as disc height over 16 weeks in vivo.
Journal of Biomechanics | 2015
Hiromichi Fujie; Ryosuke Nansai; Wataru Ando; Kazunori Shimomura; Yu Moriguchi; David A. Hart; Norimasa Nakamura
The purpose of the present study was to investigate the zone-specific integration properties of articular cartilage defects treated in vivo with scaffold-free three-dimensional tissue-engineered constructs (TECs) derived from allogenic synovial mesenchymal stem cells (MSCs) in a porcine model. The TEC derived from the synovial MSCs was implanted into chondral defects in the medial femoral condyle of the knee. The integration boundary of repair tissue with the adjacent host cartilage was morphologically and biomechanically evaluated at 6 months post-implantation. Histological assessments showed that the repair tissue in each zone was well integrated with the adjacent host cartilage, with an apparent secure continuity of the extracellular matrix. There were no significant differences in histological scores between the integration boundary and the center of the repair tissue at every zone. Nonetheless, in all the specimens subjected to mechanical testing, failure occurred at the integration boundary. The average tensile strength of the integration boundary vs normal cartilage was 0.6 vs 4.9, 3.0 vs 12.6, and 5.5 vs 12.8MPa at the superficial, middle, and deep layers, respectively. Thus, these results indicate the most fragile point in the repair tissue remained at the integration boundary in spite of the apparent secure tissue continuity and equivalent histological quality with the center of the repair tissue. Such tissue vulnerability at the surface integration boundary could affect the long-term durability of the tissue repair, and thus, special consideration will be needed in the post-operative rehabilitation programming to enhance the longevity of such repair tissues in response to normal knee loading.
Stem Cells International | 2017
Ryota Chijimatsu; Makoto Ikeya; Yukihiko Yasui; Yasutoshi Ikeda; Kosuke Ebina; Yu Moriguchi; Kazunori Shimomura; David A. Hart; Hideki Yoshikawa; Norimasa Nakamura
Mesenchymal stem cells (MSCs) derived from induced pluripotent stem cells (iPSCs) are a promising cell source for the repair of skeletal disorders. Recently, neural crest cells (NCCs) were reported to be effective for inducing mesenchymal progenitors, which have potential to differentiate into osteochondral lineages. Our aim was to investigate the feasibility of MSC-like cells originated from iPSCs via NCCs for osteochondral repair. Initially, MSC-like cells derived from iPSC-NCCs (iNCCs) were generated and characterized in vitro. These iNCC-derived MSC-like cells (iNCMSCs) exhibited a homogenous population and potential for osteochondral differentiation. No upregulation of pluripotent markers was detected during culture. Second, we implanted iNCMSC-derived tissue-engineered constructs into rat osteochondral defects without any preinduction for specific differentiation lineages. The implanted cells remained alive at the implanted site, whereas they failed to repair the defects, with only scarce development of osteochondral tissue in vivo. With regard to tumorigenesis, the implanted cells gradually disappeared and no malignant cells were detected throughout the 2-month follow-up. While this study did not show that iNCMSCs have efficacy for repair of osteochondral defects when implanted under undifferentiated conditions, iNCMSCs exhibited good chondrogenic potential in vitro under appropriate conditions. With further optimization, iNCMSCs may be a new source for tissue engineering of cartilage.
Cureus | 2016
Brenton Pennicooke; Yu Moriguchi; Ibrahim Hussain; Lawrence Bonssar; Roger Härtl
Biologic-based treatment strategies for musculoskeletal diseases have gained traction over the past 20 years as alternatives to invasive, costly, and complicated surgical interventions. Spinal degenerative disc disease (DDD) is among the anatomic areas being investigated among this group, notably due to its high incidence and functional debilitation. In this review, we report the literature encompassing the use of biologic-based therapies for DDD. Articles published between January 1995 and November 2015 were reviewed, with a subset meeting the primary and secondary inclusion criteria of clinical trial results that could be sub-classified into bimolecular, cell-based, or gene therapies, as well as studies investigating the utility of allogeneic and tissue-engineered intervertebral discs. Ongoing clinical trials that have not yet published results are also mentioned to present the current state of the field. This exciting area has demonstrated positive and encouraging results across multiple strategies; thus, future bimolecular and regenerative techniques and understanding will likely lead to an increase in the number of human clinical trials assessing these therapies.