Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu Seok Youn is active.

Publication


Featured researches published by Yu Seok Youn.


Angewandte Chemie | 2008

A Virus‐Mimetic Nanogel Vehicle

Eun Seong Lee; Dongin Kim; Yu Seok Youn; Kyung Taek Oh; You Han Bae

Viruses infect specific cells within host organisms, replicate, destroy the cells, and spread from cell to cell in infectious cycles, thus causing disease.[1] These viral properties have inspired synthetic designs of various delivery vehicles,[2–6] particularly for toxic anticancer agents that exhibit numerous side effects. Drug-delivery vehicles often mimic viral aspects, such as size and surface properties, to improve cell entry and residence within the body before being cleared.[2–6] Recent efforts in biomimetic drug-carrier design have aimed to endow advanced functionality.[3] Herein, we describe a synthetic nanosized polymer vehicle that mimics viral properties more significantly than any known delivery systems so far reported. This virus-mimetic nanogel (VM-nanogel) should prove valuable for treating several major disease classes, such as tumors, with greater efficacy.


Angewandte Chemie | 2011

A Smart Polysaccharide/Drug Conjugate for Photodynamic Therapy

So Young Park; Hye Jung Baik; Young Taik Oh; Kyung Taek Oh; Yu Seok Youn; Eun Seong Lee

Recent improvements in drug-carrier design for photodynamic therapy (PDT) have brought about significant advances for treating skin, breast, and lung tumors. The local high-dose strategy of PDT suggests beneficial therapeutic efficacy with high selectivity when using photosensitizing drugs for the target site, as well as reduced side effects for normal tissues. A variety of drug-carrying vehicles, such as nanoparticles, drug conjugates, and polymeric micelles have frequently exhibited characteristics that may make possible the successful delivery of photosensitizing drugs, thus improving cell entry and residence in tumor sites. However, these approaches have, thus far, achieved rather limited success, owing primarily to the practical obstacles inherent to natural in vivo conditions. In this study, we describe a novel molecular “Trojan horse” system that quickly switches into an aggressive molecule for tumor destruction within the environment of the tumor. Advances in functionality have enabled our system to exhibit an intelligent switch from a threedimensional supramolecular assembly (i.e., self-quenched state of photosensitizing drugs) into extended random molecules (i.e., dequenched state for singlet-oxygen production), which corresponds to a change in surface charge (Figure 1). This system may be more significant than any known photosensitizing drug conjugate thus far developed.


Bioconjugate Chemistry | 2005

Synthesis, characterization, and pharmacokinetic studies of PEGylated glucagon-like peptide-1.

Sangheon Lee; Seulki Lee; Yu Seok Youn; Dong Hee Na; Su Young Chae; Youngro Byun; Kang Choon Lee

Glucagon-like peptide-1-(7-36) (GLP-1) is a hormone derived from the proglucagon molecule, which is considered a highly desirable antidiabetic agent mainly due to its unique glucose-dependent stimulation of insulin secretion profiles. However, the development of a GLP-1-based pharmaceutical agent has a severe limitation due to its very short half-life in plasma, being primarily degraded by dipeptidyl peptidase IV (DPP-IV) enzyme. To overcome this limitation, in this article we propose a novel and potent DPP-IV-resistant form of a poly(ethylene glycol)-conjugated GLP-1 preparation and its pharmacokinetic evaluation in rats. Two series of mono-PEGylated GLP-1, (i) N-terminally modified PEG(2k)-N(ter)-GLP-1 and (ii) isomers of Lys(26), Lys(34) modified PEG(2k)-Lys-GLP-1, were prepared by using mPEG-aldehyde and mPEG-succinimidyl propionate, respectively. To determine the optimized condition for PEGylation, the reactions were monitored at different pH buffer and time intervals by RP-HPLC and MALDI-TOF-MS. The in vitro insulinotropic effect of PEG(2k)-Lys-GLP-1 showed comparable biological activity with native GLP-1 (P = 0.11) in stimulating insulin secretion in isolated rat pancreatic islet and was significantly more potent than the PEG(2k)-N(ter)-GLP-1 (P < 0.05) that showed a marked reduced potency. Furthermore, PEG(2k)-Lys-GLP-1 was clearly resistant to purified DPP-IV in buffer with 50-fold increased half-life compared to unmodified GLP-1. When PEG(2k)-Lys-GLP-1 was administered intravenously and subcutaneously into rats, PEGylation improved the half-life, which resulted in substantial improvement of the mean plasma residence time as a 16-fold increase for iv and a 3.2-fold increase for sc. These preliminary results suggest a site specifically mono-PEGylated GLP-1 greatly improved the pharmacological profiles; thus, we anticipated that it could serve as potential candidate as an antidiabetic agent for the treatment of non-insulin-dependent diabetes patients.


International Journal of Pharmaceutics | 2011

Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity

Tae Hyung Kim; Hai Hua Jiang; Yu Seok Youn; Chan Woong Park; Kyung Kook Tak; Seulki Lee; Hyungjun Kim; Sangyong Jon; Xiaoyuan Chen; Kang Choon Lee

Curcumin (CCM), a yellow natural polyphenol extracted from turmeric (Curcuma longa), has potent anti-cancer properties as has been demonstrated in various human cancer cells. However, the widespread clinical application of this efficient agent in cancer and other diseases has been limited by its poor aqueous solubility and bioavailability. In this study, we prepared novel CCM-loaded human serum albumin (HSA) nanoparticles (CCM-HSA-NPs) for intravenous administration using albumin bound technology. Field emission scanning electron microscopy (FE-SEM) and dynamic light scattering (DLS) investigation confirmed a narrow size distribution in the 130-150nm range. Furthermore, CCM-HSA-NPs showed much greater water solubility (300-fold) than free CCM, and on storage, the biological activity of CCM-HSA-NPs was preserved with negligible activity loss. In vivo distributions and vascular endothelial cells transport studies demonstrated the superiority of CCM-HSA-NPs over CCM. Amounts of CCM in tumors after treatment with CCM-HSA-NPs were about 14 times higher at 1h after injection than that achieved by CCM. Furthermore, vascular endothelial cell binding of CCM increased 5.5-fold, and transport of CCM across a vascular endothelial cell monolayer by Transwell testing was 7.7-fold greater for CCM-HSA-NPs than CCM. Finally, in vivo antitumor tests revealed that CCM-HSA-NPs (10 or 20mg/kg) had a greater therapeutic effect (50% or 66% tumor growth inhibition vs. PBS-treated controls) than CCM (18% inhibition vs. controls) in tumor xenograft HCT116 models without inducing toxicity. We attribute this potent antitumor activity of CCM-HSA-NPs to enhanced water solubility, increased accumulation in tumors, and an ability to traverse vascular endothelial cell.


Journal of Controlled Release | 2016

Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors.

Hyeong Jun Byeon; Le Quang Thao; Seung-Hyun Lee; Sun Young Min; Eun Seong Lee; Beom Soo Shin; Han-Gon Choi; Yu Seok Youn

Albumin nanoparticles have been increasingly viewed as an effective way of delivering chemotherapeutics to solid tumors. Here, we report the one-pot development of a unique prototype of doxorubicin-loaded nanoparticles (NPs) made of naïve albumin (HSA) plus cationic- (c-HSA) or mannose-modified-albumin (m-HSA), with the goal of traversing the blood-brain barrier and targeting brain tumors. c-HSA was synthesized by conjugating ethylenediamine to naïve HSA. Then, m-HSA was derivatized using mannopyranoside via a thiol-maleimide reaction. The c/m-HSA NPs were prepared using a mixture solution of c- and m-HSAs in deionized water and doxorubicin in ethanol/chloroform in the same pot using a high-pressure homogenizer. The c/m-HSA NPs were spherical and well-dispersed, with a particle size of 90.5±3.1nm and zeta-potential of -12.0±0.3mV at c- and m-HSA feed ratios of 5% and 10%, respectively. The c/m-HSA NPs displayed good stability over 3days based on particle size and a linear gradual doxorubicin release over 2days. Specifically, the inhibitory concentration (IC50; 0.5±0.02μg/ml) of c/m-HSA NPs was >2.2-15.6 fold lower than those of doxorubicin or the other HSA NPs. Moreover, among HSA NPs, c/m-HSA NPs exhibited the most prominent performances in transport across the bEnd.3 cell monolayer and uptake in bEnd.3 cells as well as U87MG glioblastoma cells and spheroids. Furthermore, c/m-HSA NPs were localized to a greater extent in brain glioma compared to naïve HSA NPs. Orthotopic glioma-bearing mice treated with c/m-HSA NPs displayed significantly smaller tumors than the mice treated with saline, doxorubicin or HSA NPs. This improved anti-glioma efficacy seemed to be due to the dual-enhanced system of dual cationic absorptive transcytosis and glucose-transport by the combined use of c- and m-HSAs. The c/m-HSA NPs have potential as a novel anti-brain cancer agent with good targetability.


Biomaterials | 2012

Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types

Sungho Bae; Kyungwan Ma; Tae Hyung Kim; Eun Seong Lee; Kyung Taek Oh; Eun-Seok Park; Kang Choon Lee; Yu Seok Youn

Human serum albumin (HSA) nanoparticles (NPs) surface modified with tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and transferrin, and containing doxorubicin were designed and prepared. Surface amines of HSA were reversibly protected with dimethylmaleic anhydride (DMMA), and HSA-NPs were prepared using a desolvation technique. Furthermore, the surfaces of HSA-NPs were modified with thiolated TRAIL or transferrin using sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The prepared TRAIL/transferrin plus doxorubicin HSA-NPs were characterized by TEM, FE-SEM, and particle size analysis, and their cytotoxic and apoptotic activities were evaluated in several cancer cell lines, namely, HCT 116, doxorubicin-resistant MCF-7, and CAPAN-1. In addition, the tumor-targeting abilities of NPs were assessed using an infrared imaging system in HCT 116-xenografted nu/nu mice. Results showed that the TRAIL/transferrin/doxorubicin HSA-NPs had remarkable cytotoxic and apoptotic activities in all cancer cells examined with a general or a drug-resistant character, and that these NPs had obvious synergistic cytotoxic effects particularly on CAPAN-1 cells. Moreover, these HSA-NPs were effectively localized to tumors in a HCT 116-xenografted nu/nu mouse over 32 h. The findings of this study suggest that the described TRAIL/transferrin/doxorubicin HSA-NPs are a useful targeting agent capable of killing different types of tumor cells in various tissue organs.


Journal of Controlled Release | 2003

Monitoring of peptide acylation inside degrading PLGA microspheres by capillary electrophoresis and MALDI-TOF mass spectrometry

Dong Hee Na; Yu Seok Youn; Sang Deuk Lee; Miwon Son; Won Bae Kim; Patrick P. DeLuca; Kang Choon Lee

The purpose of this research was to assess the acylation reactions of peptides, salmon calcitonin (sCT), human parathyroid hormone 1-34 (hPTH1-34) and leuprolide, in poly(lactic-co-glycolic acid) (PLGA) microspheres. Capillary electrophoresis (CE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) were used for determining and monitoring peptide acylation and quantitating acylation products in the degrading PLGA microspheres. In the degrading PLGA microspheres of sCT and hPTH1-34, the acylation products were observed and determined to be adducts with glycolic acid units from degradable PLGA polymer by MALDI-TOF MS. In the microsphere of leuprolide, however, the acylation product was not observed even after 28 days of incubation at the release medium, which represents the different stabilities among peptides according to the primary structure. As the leuprolide contains tyrosine and serine having hydroxyl group of nucleophilic amino acids, the acylation reaction of peptide is shown to be mainly due to the primary amino groups of N-terminus or lysine residue. The complementary use of CE and MALDI-TOF MS will be useful for searching the counter measures as well as determining the peptide acylation in the manufactured formulations on the market.


Colloids and Surfaces B: Biointerfaces | 2010

A self-organized 3-diethylaminopropyl-bearing glycol chitosan nanogel for tumor acidic pH targeting: in vitro evaluation.

Nam Muk Oh; Kyung Taek Oh; Hye Jung Baik; Bo Reum Lee; A. Hyeong Lee; Yu Seok Youn; Eun Seong Lee

In this study, a novel pH-responsive nanogel composed of glycol chitosan (GCS) grafted with functional 3-diethylaminopropyl (DEAP) groups (denoted as GCS-g-DEAP hereafter) was fabricated. The GCS-g-DEAP was designed to have a self-assembled arrangement consisting of hydrophilic block (GCS) and hydrophobic block (DEAP) at physiological pH. As the pH decreased to tumor extracellular pH (pH(e)), the nanogel was destabilized due to the protonation of DEAP. The pH-responsive property of the nanogel at tumor extracellular pH (pH(e)) was characterized in drug-release kinetic studies. The release of doxorubicin (DOX) from DOX-loaded nanogels was significantly accelerated at lower pH values, which allowed for increased DOX uptake by non-small lung carcinoma A546 cells under a slightly acidic pH condition, as in tumor pH(e).


Journal of Controlled Release | 2009

A new orally available glucagon-like peptide-1 receptor agonist, biotinylated exendin-4, displays improved hypoglycemic effects in db/db mice

Cheng Hao Jin; Su Young Chae; Sohee Son; Tae Hyung Kim; Key An Um; Yu Seok Youn; Seulki Lee; Kang Choon Lee

An orally active glucagon-like peptide-1 (GLP-1) formulation would have great advantages over conventional injectable therapies for the treatment of diabetic patients. Because GLP-1 absorption in the intestine is restricted by its natural physiological characteristics, biotinylated exendin-4 analogues might useful as orally active GLP-1 receptor agonists. Three different biotinylated exendin-4 analogues, Lys(27)-Biotin-Exendin-4 (MB1-Ex-4), Lys(12)-Biotin-Exendin-4 (MB2-Ex-4), and Lys(12, 27)-Biotin-Exendin-4 (DB-Ex-4) were prepared, and their biological activities and enzymatic stabilities were studied in vitro. The hypoglycemic effects and pharmacokinetics of these analogues after oral administration were evaluated in db/db mice and Sprague-Dawley rats, respectively. These biotinylated exendin-4 analogues preserved GLP-1 receptor binding affinity and stimulated insulin secretion in RIN-m5F murine insulinoma cells and in isolated rat islets, respectively, and were as potent as exendin-4. In particular, DB-Ex-4 showed 9.0-fold better stability against rat intestinal fluid than exendin-4. When 0.1, 1, and 10 microg/mouse of DB-Ex-4 were orally administered, mean total hypoglycemic degrees (HGD) were increased by 36.8+/-1.2, 46.9+/-1.8, and 54.3+/-4.5%, respectively, whereas 1 microg/mouse of native exendin-4 showed an increase of 8.8+/-7.3%. This study demonstrates that biotinylated exendin-4 analogues are absorbed in the intestine and that they have biological efficacies of exendin-4. Furthermore, it indicates that biotinylated exendin-4 analogues could be used as potential oral antidiabetic agent for the treatment of type 2 diabetes.


Biomaterials | 2013

Doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer

Insoo Kim; Hyeong Jun Byeon; Tae Hyung Kim; Eun Seong Lee; Kyung Taek Oh; Beom Soo Shin; Kang Choon Lee; Yu Seok Youn

Inhalable highly porous large PLGA microparticles with incorporated doxorubicin and surface-attached with TRAIL (TRAIL/Dox PLGA MP) were fabricated using a w/o/w double emulsification method using ammonium bicarbonate as a gas-foaming agent for the treatment of lung cancer. The TRAIL/Dox PLGA MP produced were highly porous and 11.5 ± 0.4 μm in diameter, and the loading efficiencies of Dox and TRAIL were 86.5 ± 6.5% and 91.8 ± 2.4%, respectively. TRAIL and doxorubicin were gradually released by TRAIL/Dox PLGA over 7 days, and pulmonary administration resulted in the deposition of TRAIL/Dox PLGA MP in mouse lungs, and they remained in situ for up to a week. The anti-tumor efficacy of pulmonary administered TRAIL/Dox PLGA MP was evaluated in a BALB/c nu/nu mice mouse model of H226 cell metastasis. Tumors in H226-implanted mice treated with TRAIL/Dox PLGA MP were markedly smaller and fewer in number than mice treated with TRAIL or Dox PLGA MP alone. Furthermore, this improved performance was found to be due to the synergistic apoptotic effects of the two drugs. We believe that TRAIL/Dox PLGA MP offer a promise of a sustained-release, long-acting, inhalable anti-lung cancer agent. Furthermore, the synergism observed between TRAIL and doxorubicin suggests that the doxorubicin dosage could be substantially reduced and its side effects minimized.

Collaboration


Dive into the Yu Seok Youn's collaboration.

Top Co-Authors

Avatar

Eun Seong Lee

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge