Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dong Shik Kim is active.

Publication


Featured researches published by Dong Shik Kim.


Carbohydrate Polymers | 2014

Comparison of a solid SMEDDS and solid dispersion for enhanced stability and bioavailability of clopidogrel napadisilate.

Dong Wuk Kim; Min Seok Kwon; Abid Mehmood Yousaf; Prabagar Balakrishnan; Jong Hyuck Park; Dong Shik Kim; Beom-Jin Lee; Young Joon Park; Chul Soon Yong; Jong Oh Kim; Han-Gon Choi

The intention of this study was to compare the physicochemical properties, stability and bioavailability of a clopidogrel napadisilate (CN)-loaded solid dispersion (SD) and solid self-microemulsifying drug delivery system (solid SMEDDS). SD was prepared by a surface attached method using different ratios of Cremophor RH60 (surfactant) and HPMC (polymer), optimized based on their drug solubility. Liquid SMEDDS was composed of oil (peceol), a surfactant (Cremophor RH60) and a co-surfactant (Transcutol HP). A pseudo-ternary phase diagram was constructed to identify the emulsifying domain, and the optimized liquid SMEDDS was spray dried with an inert solid carrier (silicon dioxide), producing the solid SMEDDS. The physicochemical properties, solubility, dissolution, stability and pharmacokinetics were assessed and compared to clopidogrel napadisilate (CN) and bisulfate (CB) powders. In solid SMEDDS, liquid SMEDDS was absorbed or coated inside the pores of silicon dioxide. In SD, hydrophilic polymer and surfactants were adhered onto drug surface. The drug was in crystalline and molecularly dispersed form in SD and solid SMEDDS, respectively. Solid SMEDDS and SD greatly increased the solubility of CN but gave lower drug solubility compared to CB powder. These preparations significantly improved the dissolution of CN, but the latter more increased than the former. Stability under accelerated condition showed that they were more stable compared to CB powder, and SD was more stable than solid SMEDDS. They significantly increased the oral bioavailability of CN powder. Furthermore, SD showed significantly improved oral bioavailability compared to solid SMEDDS and CB powder. Thus, SD with excellent stability and bioavailability is recommended as an alternative for the clopidogrel-based oral formulation.


International Journal of Nanomedicine | 2016

Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate.

Abid Mehmood Yousaf; Omer Mustapha; Dong Wuk Kim; Dong Shik Kim; Kyeong Soo Kim; Sung Giu Jin; Chul Soon Yong; Yu Seok Youn; Yu-Kyoung Oh; Jong Oh Kim; Han-Gon Choi

Purpose The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Methods Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. Results All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of <200 nm with the drug present in the amorphous state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Conclusion Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate.


Journal of Pharmaceutical Investigation | 2016

Combined phototherapy in anti-cancer treatment: therapeutics design and perspectives

Tuan Hiep Tran; Raj Kumar Thapa; Hanh Thuy Nguyen; Tung Thanh Pham; Thiruganesh Ramasamy; Dong Shik Kim; Chul Soon Yong; Jong Oh Kim; Han-Gon Choi

Photodynamic (PDT) and photothermal (PTT) therapy are proven effective strategies for the treatment of cancer. PDT, a photochemistry-based therapy, utilises light energy based photosensitiser for the production of cytotoxic species via electron transfer to biological substrates and potential excitation or energy transfer to molecular oxygen. On the other hand, PTT utilises substances that can convert light energy into heat for efficient tumour ablation. This review provides an insight into the current research investigations of different nanocarriers utilising the synergistic effects of PTT and PDT for anticancer therapy.


International Journal of Pharmaceutics | 2016

Development of a novel sodium fusidate-loaded triple polymer hydrogel wound dressing: Mechanical properties and effects on wound repair

Sung Giu Jin; Kyeong Soo Kim; Dong Wuk Kim; Dong Shik Kim; Youn Gee Seo; Toe Gyung Go; Yu Seok Youn; Jong Oh Kim; Chul Soon Yong; Han-Gon Choi

To develop a novel sodium fusidate-loaded triple polymer hydrogel dressing (TPHD), numerious polyvinyl alcohol-based (PVA) hydrogel dressings were prepared with various hydrophilic polymers using the freeze-thaw method, and their hydrogel dressing properties were assessed. Among the hydrophilic polymers tested, sodium alginate (SA) improved the swelling capacity the most, and polyvinyl pyrrolidone (PVP) provided the greatest improvement in bioadhesive stength and mechanical properties. Thus, PVA based-TPHDs were prepared using different ratios of PVP:SA. The effect of selected PVP:SA ratios on the swelling capacity, bioadhesive strength, mechanical properties, and drug release, permeation and deposition characteristics of sodium fusidate-loaded PVA-based TPHDs were assessed. As the ratio of PVP:SA increased in PVA-loaded TPHD, the swelling capacity, mechanical properties, drug release, permeation and deposition were improved. The TPHD containing PVA, PVP, SA and sodium fusidate at the weight ratio of 10/6/1/1 showed excellent hydrogel dressing properties, release, permeation and deposition of drug. Within 24h, 71.8 ± 1.3% of drug was released. It permeated 625.1 ± 81.2 μg/cm(2) through the skin and deposited of 313.8 ± 24.1 μg/cm(2) within 24h. The results of in vivo pharmacodynamic studies showed that sodium fusidate-loaded TPHD was more effective in improving the repair process than was a commercial product. Thus, this sodium fusidate-loaded TPHD could be a novel tool in wound care.


International Journal of Pharmaceutics | 2016

Effect of HM30181 mesylate salt-loaded microcapsules on the oral absorption of paclitaxel as a novel P-glycoprotein inhibitor

Jin Cheul Kim; Kyeong Soo Kim; Dong Shik Kim; Sung Giu Jin; Dong Wuk Kim; Yong Il Kim; Jae Hyun Park; Jong Oh Kim; Chul Soon Yong; Yu Seok Youn; Jong Soo Woo; Han-Gon Choi

The purpose of this study was to develop HM30181 mesylate salt (HM30181M)-loaded microcapsules as a novel P-glycoprotein inhibitor for enhancing the oral absorption of paclitaxel. The effect of various carriers including hydrophilic polymers and solvents on the solubility of HM30181M were evaluated. Among the hydrophilic polymers and solvents tested, HPMC and methylene chloride (and ethanol) provided the highest HM30181M solubility. Numerous HM30181M-loaded microcapsules were prepared with HPMC, silicon dioxide and acidifying agents using a spray-drying technique, and their solubility, dissolution and physicochemical properties were evaluated. Furthermore, a pharmacokinetic study was performed after oral administration of paclitaxel alone, simultaneously with HM30181M powder or HM30181M-loaded microcapsules to rats. Among the acidifying agents investigated, phosphoric acid provided the best improvement in the solubility and dissolution of HM30181M. Moreover, the microcapsule composed of HM30181M, HPMC, silicon dioxide and phosphoric acid at a weight ratio of 3:6:3:2 remarkably enhanced the solubility and dissolution of HM30181M compared with the HM30181M powder alone. The microcapsules were spherical in shape, had a reduced particle size of about 7μm, and contained HM30181M in an amorphous state. Furthermore, this microcapsule significantly enhanced HM30181M absorption, making it about 1.7-fold faster and 1.6-fold greater after simultaneous administration, leading to about 70- and 2-fold improved oral bioavailability of paclitaxel compared with paclitaxel alone and the simultaneous administration with HM30181M powder, respectively. Thus, this novel microcapsule could be a potential candidate for effective P-glycoprotein inhibition during oral administration of paclitaxel.


International Journal of Pharmaceutics | 2016

Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings.

Sung Giu Jin; Abid Mehmood Yousaf; Kyeong Soo Kim; Dong Wuk Kim; Dong Shik Kim; Jin-Ki Kim; Chul Soon Yong; Yu Seok Youn; Jong Oh Kim; Han-Gon Choi

The purpose of this study was to investigate the influence of different hydrophilic polymers on the swelling, bioadhesion and mechanical strength of hydrocolloid wound dressings (HCDs) in order to provide an appropriate composition for a hydrocolloid wound dressing system. In this study, the HCDs were prepared with styrene-isoprene-styrene copolymer (SIS) and polyisobutylene (PIB) as the base using a hot melting method. Additionally, numerous SIS/PIB-based HCDs were prepared with six hydrophilic polymers, and their wound dressing properties were assessed. Finally, the wound healing efficacy of the selected formulations was compared to a commercial wound dressing. The swelling ratio, bioadhesive force and mechanical strengths of HCDs were increased in the order of sodium alginate>sodium CMC=poloxamer=HPMC>PVA=PVP, sodium alginate>sodium CMC=poloxamer>PVA>HPMC=PVP and sodium alginate≥PVA>PVP=HPMC=sodium CMC>poloxamer, respectively. Among the hydrophilic polymers tested, sodium alginate most enhanced the swelling capacity, bioadhesive force and mechanical strengths. Thus, the hydrophilic polymers played great role in the swelling, bioadhesion and mechanical strength of SIS/PIB-based HCDs. The HCD formulation composed of PIB, SIS, liquid paraffin and sodium alginate at the weight ratio of 20/25/12/43 gave better wound dressing properties and more excellent wound healing efficacy than the commercial wound dressing. Therefore, the novel HCD formulation could be a promising hydrocolloid system for wound dressings.


Journal of Microencapsulation | 2016

Influence of polyvinylpyrrolidone quantity on the solubility, crystallinity and oral bioavailability of fenofibrate in solvent-evaporated microspheres

Abid Mehmood Yousaf; Dong Wuk Kim; Dong Shik Kim; Jong Oh Kim; Yu Seok Youn; Kwan Hyung Cho; Chul Soon Yong; Han-Gon Choi

Abstract The objective of this study is to explore the influence of polyvinylpyrrolidone (PVP) quantity on the solubility, crystallinity and oral bioavailability of poorly water-soluble fenofibrate in solvent-evaporated microspheres. Numerous microspheres were prepared with fenofibrate, sodium lauryl sulphate (SLS) and PVP using the spray-drying technique. Their aqueous solubility, dissolution, physicochemical properties and pharmacokinetics in rats were assessed. The drug in the solvent-evaporated microspheres composed of fenofibrate, PVP and SLS at the weight ratio of 1:0.5:0.25 was not entirely changed to the amorphous form and partially in the microcrystalline state. However, the microspheres at the weight ratio of 1:4:0.25 provided the entire conversion to the amorphous form. The latter microspheres, with an improvement of about 115 000-fold in aqueous solubility and 5.6-fold improvement in oral bioavailability compared with the drug powder, gave higher aqueous solubility and oral bioavailability compared with the former. Thus, PVP quantity played an important role in these properties of fenofibrate in the solvent-evaporated microspheres.


International Journal of Pharmaceutics | 2016

Comparison of solventwetted and kneaded l-sulpirideloaded solid dispersions: Powder characterization and in vivo evaluation

Dong Shik Kim; Jong Seo Choi; Dong Wuk Kim; Kyeong Soo Kim; Youn Gee Seo; Kwan Hyung Cho; Jong Oh Kim; Chul Soon Yong; Yu Seok Youn; Soo-Jeong Lim; Sung Giu Jin; Han-Gon Choi

The purpose of this study was to compare the powder properties, solubility, dissolution and oral absorption of solvent-wetted (SWSD) and kneaded (KNSD) l-sulpiride-loaded solid dispersions. The SWSD and KNSD were prepared with silicon dioxide, sodium laurylsulfate and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) using a spray dryer and high shear mixer, respectively. Their powder properties, solubility, dissolution and oral absorption were assessed compared to l-sulpiride powder. The drug in SWSD was in the amorphous state; however, in KNSD, it existed in the crystalline state. The SWSD with a drug/sodium laurylsulphate/TPGS/silicon dioxide ratio of 5/1/2/12 gave the higher drug solubility and dissolution compared to the KNSD with the same composition. The oral absorption of drug in the SWSD was 1.4 fold higher than the KNSD and 3.0 fold higher than the l-sulpiride powder (p<0.05) owing to better solubility and reduced crystallinity. Furthermore, the SWSD at the half dose was bioequivalent of commercial l-sulpiride-loaded product in rats. Thus, the SWSD with more improved oral absorption would be recommended as an alternative for the l-sulpiride-loaded oral administration.


Colloids and Surfaces B: Biointerfaces | 2016

Development of a novel L-sulpiride-loaded quaternary microcapsule: Effect of TPGS as an absorption enhancer on physicochemical characterization and oral bioavailability

Dong Shik Kim; Dong Wuk Kim; Kyeong Soo Kim; Jong Seo Choi; Youn Gee Seo; Yu Seok Youn; Kyung Taek Oh; Chul Soon Yong; Jong Oh Kim; Sung Giu Jin; Han-Gon Choi

The aim of this study was to assess the effect of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on the physicochemical characterization and oral bioavailability of a novel l-sulpiride-loaded quaternary microcapsule (QMC). The effect of carriers on drug solubility was investigated. Among the carriers tested, polyvinyl pyrrolidone (PVP), sodium lauryl sulphate (SLS) and TPGS were selected as polymer, surfactant and absorption enhancer, respectively, due to their high drug solubility. Using the solvent evaporation method, numerous QMCs with different ratios of l-sulpiride, PVP, SLS and TPGS were prepared, and their physicochemical properties, solubility and release were evaluated. In addition, the influence of TPGS concentration on the oral bioavailability of various drug doses was evaluated. All QMCs converted the crystalline drug to the amorphous form and remarkably improved the solubility, release and oral bioavailability of the drug. Furthermore, the TPGS concentration in the QMCs hardly affected the crystallinity, particle size and release, but considerably increased the solubility and oral bioavailability of the drug. In particular, as the dose of administered drug was increased, TPGS provided a greater improvement in oral drug bioavailability. Thus, TPGS played an important role in improving the oral bioavailability of l-sulpiride. Moreover, the QMC with a drug/PVP/SLS/TPGS weight ratio of 5:12:1 :20 with approximately 3.3-fold improved oral bioavailability would be recommended as a commercial pharmaceutical product for oral administration of l-sulpiride.


Drug Delivery | 2017

Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration

Fakhar ud Din; Ju Yeon Choi; Dong Wuk Kim; Omer Mustapha; Dong Shik Kim; Raj Kumar Thapa; Sae Kwang Ku; Yu Seok Youn; Kyung Taek Oh; Chul Soon Yong; Jong Oh Kim; Han-Gon Choi

Abstract Intravenously administered for the treatment of rectum cancer, irinotecan produces severe side effects due to very high plasma concentrations. A novel irinotecan-encapsulated double reverse thermosensitive nanocarrier system (DRTN) for rectal administration was developed as an alternative. The DRTN was fabricated by dispersing the thermosensitive irinotecan-encapsulated solid lipid nanoparticles (SLN) in the thermosensitive poloxamer solution. Its gel properties, pharmacokinetics, morphology, anticancer activity and immunohistopathology were assessed after its rectal administration to rats and tumor-bearing mice. In the DRTN, the solid form of the SLN and the liquid form of the poloxamer solution persisted at 25 °C; the former melted to liquid, and the latter altered to gel at 36.5 °C. The DRTN was easily administered to the anus, gelling rapidly and strongly after rectal administration. Compared to the conventional hydrogel and intravenously administered solution, it retarded dissolution and initial plasma concentration. The DRTN gave sustained release and nearly constant plasma concentrations of irinotecan at 1–3 h in rats, resulting in improved anticancer activity. It induced no damage to the rat rectum and no body weight loss in tumor-bearing mice. Thus, this irinotecan-encapsulated DRTN associated with a reduced burst effect, lack of toxicity and excellent antitumor efficacy would be strongly recommended as a rectal pharmaceutical product alternative to commercial intravenous injection in the treatment of rectum and colon cancer.

Collaboration


Dive into the Dong Shik Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Seok Youn

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge