Yu-Sung Kim
Gyeongsang National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu-Sung Kim.
Transactions of The Korean Society for Noise and Vibration Engineering | 2008
Donghyun Kim; Yu-Sung Kim; Yo-Han Kim; Il-Kwon Oh
In this study, supersonic and hypersonic flutter characteristics have been analyzed for the various typical section shapes of missile fin configurations. Nonlinear flutter analyses are conducted considering the effect of moving shock waves. Computational fluid dynamic method is applied to accurately predict unsteady aerodynamic loads due to structural motions for the solution of aeroelastic governing equations. Commonly used typical section shapes of supersonic and hypersonic launch vehicles are considered in the present numerical study. Detailed flutter responses for four different typical section models are presented and the flutter characteristics are physically investigated.
Journal of The Korean Society for Aeronautical & Space Sciences | 2008
Dong-Hyun Kim; Yu-Sung Kim
In this study, advanced (fluid-structure interaction (FSI)) analysis system has been developed in order to predict turbine cascade performance with blade deformation effect due to aerodynamic loads. Intereference effects due to the relative movement of the rotor cascade with respect to the stator cascade are also considered. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation k-ω SST turbulence models are solved to accurately predict fluid dynamic loads considering flow separation effects. A fully implicit time marching scheme based on the (coupled Newmark time-integration method) with high artificial damping is efficiently used to compute the complex fluid-structure interaction problem. Predicted aerodynamic performance considering structural deformation effect of the blade shows somewhat different results compared to the case of rigid blade model. Cascade performance evaluations for different elastic axis positions are importantly presented and its aeroelastic effects are investigated.
Transactions of The Korean Society for Noise and Vibration Engineering | 2009
Yu-Sung Kim; Dong-Hyun Kim; Yo-Han Kim; Oung Park
ABSTRACT In this study, fluid/structure coupled analyses have been conducted for 3-D stator and rotor configuration. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate fluid/structure responses of general stator-rotor configurations. To solve the fluid/structure coupled problems, fluid domains are modeled using the structural grid system with dynamic moving and local deforming techniques. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras(S-A) and SST turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3-D turbine blades for fluid-structure interaction(FSI) problems. Detailed fluid/structure analysis responses for stator-rotor interaction flow conditions are presented to show the physical performance and flow characteristics.
Transactions of The Korean Society for Noise and Vibration Engineering | 2009
Dong-Hyun Kim; Yu-Sung Kim; Guo Wei Yang; Kyu-Kang Jung; Kyung-Hee Kim; Dae-Gee Min
ABSTRACT In this study, flow-induced vibration(FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction(FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.
International Journal of Modern Physics B | 2008
Dong-Hyun Kim; Yu-Sung Kim
In this study, nonlinear crash analyses have been conducted for the skid landing gear of helicopter. The realistic configuration of skid landing gear system is considered. Detailed three-dimensional finite element model with variable thickness and material nonlinearity is constructed for required impact design conditions. Advanced computational approach is used to conduct nonlinear transient impact dynamic analyses for different collision models. Characteristics of impact dynamic responses due to the ground crash are practically investigated in detail. It is also shown that the exact consideration of friction effect is very important to accurately predict the crash behavior of the skid type landing gear system. Finally, two typical landing conditions are analyzed and correlated with drop test results.
Transactions of The Korean Society for Noise and Vibration Engineering | 2005
Se-Won Oh; Yu-Sung Kim; Dong-Hyun Kim
In this study, experimental tests for driving noise of various optical disk drives (ODD) have been performed using 1/2` microphone noise measurement system. Several new and old ODD models by different manufacturers are practically considered and compared for realistic driving conditions. Sound insulation case with absorbing material for the present experimental tests is designed and constructed using CATIA system. It is found that average data transfer rate, operating RPM, and sound noise level seem to be different for the ODD models with same denoted speed by different manufacturers. Moreover, driving sound noise level can be largely affected by both tray shape and driving speed even for the condition of the same apparent data transfer rate.
Transactions of The Korean Society for Noise and Vibration Engineering | 2009
Dong-Man Kim; Dong-Hyun Kim; Kang-Kyun Park; Yu-Sung Kim
In this study, computer applied engineering(CAE) techniques are fully used to efficiently conduct structural and dynamic analyses of a huge composite rotor blade using super-element. Computational fluid dynamics(CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade. Structural vibration analysis is conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results are presented for comparison and the structural dynamic behaviors of the rotor blade are investigated herein.
Journal of The Korean Society for Aeronautical & Space Sciences | 2009
Dong-Hyun Kim; Yu-Sung Kim; Mi-Hyun Hwang; Su-Hyun Kim
In this study, transonic aeroelastic response analyses have been conducted for the DLR-F4(wing-body) aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.
Transactions of The Korean Society for Noise and Vibration Engineering | 2007
Hyo-Keun Park; Dong-Man Kim; Yu-Sung Kim; Myung-Kuk Kim; Seung-Bae Chen; Donghyun Kim
In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and full three-dimensional models. The present computational method is based on the general finite element method with rotating gyroscopic effects of the rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis tools and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test data conducted herein.
ASME Turbo Expo 2007: Power for Land, Sea, and Air | 2007
Dong-Hyun Kim; Se-Won Oh; Yu-Sung Kim; Oung Park
In this study, nonlinear dynamic responses considering fluid-structure interactions have been conducted for a stator-rotor cascade configuration. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responses and flutter stability of general stator-rotor cascade configurations. Especially, effects of relative motions of the rotor cascade with respect to the stator cascade are considered in numerical analyses. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming techniques. Unsteady, Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras and SST k-ω turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is typically used for computing the coupled aeroelastic governing equations of the cascade fluid-structure interaction problems. Detailed dynamic aeroelastic responses for different stator-rotor interaction flow conditions are presented to show the physical vibration characteristics in the time-domain.Copyright