Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu-Tzu Tai is active.

Publication


Featured researches published by Yu-Tzu Tai.


Nature Genetics | 2009

Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer

Gijs van Haaften; Gillian L. Dalgliesh; Helen Davies; Lina Chen; Graham R. Bignell; Christopher Greenman; Sarah Edkins; Claire Hardy; Sarah O'Meara; Jon Teague; Adam Butler; Jonathan Hinton; Calli Latimer; Jenny Andrews; Syd Barthorpe; Dave Beare; Gemma Buck; Peter J. Campbell; Jennifer Cole; Simon A. Forbes; Mingming Jia; David Jones; Chai Yin Kok; Catherine Leroy; Meng-Lay Lin; David J. McBride; Mark Maddison; Simon Maquire; Kirsten McLay; Andrew Menzies

Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase gene UTX, pointing to histone H3 lysine methylation deregulation in multiple tumor types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene.


Leukemia | 2001

Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications.

Deepak K. Gupta; Steven P. Treon; Yoshihito Shima; Teru Hideshima; Klaus Podar; Yu-Tzu Tai; Boris Lin; Suzanne Lentzsch; Faith E. Davies; D Chauhan; R. Schlossman; Paul G. Richardson; P Ralph; Lizi Wu; F Payvandi; George W. Muller; David I. Stirling; Kenneth C. Anderson

Increased angiogenesis has recently been recognized in active multiple myeloma (MM). Since vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are two key mediators of angiogenesis, we characterized the production of VEGF, b-FGF and interleukin-6 (IL-6) (a MM growth and survival factor) in MM cell lines and Epstein–Barr virus (EBV) transformed B cell lines from MM patients, patient MM cells, as well as bone marrow stromal cells (BMSCs) from normal healthy donors and MM patients. We detected secretion of VEGF, but no bFGF and IL-6, in MM cell lines (MM.1S, RPMI 8226 and U266); EBV transformed B cell lines from MM patients (IM-9, HS-Sultan and ARH77); MM cell lines resistant to doxorubicin (RPMI-DOX40), mitoxantrone (RPMI-MR20), melphalan (RPMI-LR5) and dexamethasone (MM.1R); and patient MM cells (MM1 and MM2). BMSCs from MM patients and normal donors secreted VEGF, b-FGF and IL-6. Importantly, when MM cells were adhered to BMSCs, there was a significant increase in VEGF (1.5- to 3.1-fold) and IL-6 (1.9- to 56-fold) secretion. In contrast, the bFGF decreased in co-cultures of BMSCs and MM cells. Paraformaldehyde fixation of BMSCs or MM cells prior to adhesion revealed that VEGF was produced both from BMSCs and MM cells, though it may come primarily from BMSCs in some cultures. IL-6 was produced exclusively in BMSCs, rather than MM cells. Moreover, when MM cells were placed in Transwell insert chambers to allow their juxtaposition to BMSCs without cell to cell contact, induction of VEGF and IL-6 secretion persisted, suggesting the importance of humoral factors. Addition of exogenous IL-6 (10 ng/ml) increased VEGF secretion by BMSCs. Conversely, VEGF (100 ng/ml) significantly increased IL-6 secretion by BMSCs. Moreover, anti-human VEGF (1 μg/ml) and anti-human IL-6 (10 μg/ml) neutralizing antibodies reduced IL-6 and VEGF secretion, respectively, in cultures of BMSCs alone and co-cultures of BMSCs and MM cells. Finally, thalidomide (100 μM) and its immunomodulatory analog IMiD1-CC4047 (1 μM) decreased the upregulation of IL-6 and VEGF secretion in cultures of BMSCs, MM cells and co-cultures of BMSCs with MM cells. These data demonstrate the importance of stromal–MM cell interactions in regulating VEGF and IL-6 secretion, and suggest additional mechanisms whereby thalidomide and IMiD1-CC4047 act against MM cells in the BM millieu.


Journal of Immunology | 2011

Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors

Michel de Weers; Yu-Tzu Tai; Michael S. van der Veer; Joost M. Bakker; Tom Vink; Daniëlle C. H. Jacobs; Lukas A. Oomen; Matthias Peipp; Thomas Valerius; Jerry W. Slootstra; Tuna Mutis; Wim K. Bleeker; Kenneth C. Anderson; Henk M. Lokhorst; Jan G. J. van de Winkel; Paul Parren

CD38, a type II transmembrane glycoprotein highly expressed in hematological malignancies including multiple myeloma (MM), represents a promising target for mAb-based immunotherapy. In this study, we describe the cytotoxic mechanisms of action of daratumumab, a novel, high-affinity, therapeutic human mAb against a unique CD38 epitope. Daratumumab induced potent Ab-dependent cellular cytotoxicity in CD38-expressing lymphoma- and MM-derived cell lines as well as in patient MM cells, both with autologous and allogeneic effector cells. Daratumumab stood out from other CD38 mAbs in its strong ability to induce complement-dependent cytotoxicity in patient MM cells. Importantly, daratumumab-induced Ab-dependent cellular cytotoxicity and complement-dependent cytotoxicity were not affected by the presence of bone marrow stromal cells, indicating that daratumumab can effectively kill MM tumor cells in a tumor-preserving bone marrow microenvironment. In vivo, daratumumab was highly active and interrupted xenograft tumor growth at low dosing. Collectively, our results show the versatility of daratumumab to effectively kill CD38-expressing tumor cells, including patient MM cells, via diverse cytotoxic mechanisms. These findings support clinical development of daratumumab for the treatment of CD38-positive MM tumors.


Science | 2011

Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy

Triona Ni Chonghaile; Kristopher A. Sarosiek; Thanh Trang Vo; Jeremy Ryan; Anupama Tammareddi; Victoria Del Gaizo Moore; Jing Deng; Kenneth C. Anderson; Paul G. Richardson; Yu-Tzu Tai; Constantine S. Mitsiades; Ursula A. Matulonis; Ronny Drapkin; Richard Stone; Daniel J. DeAngelo; David J. McConkey; Stephen E. Sallan; Lewis B. Silverman; Michelle S. Hirsch; Daniel R. Carrasco; Anthony Letai

The mitochondrial state of a tumor cell prior to chemotherapy may help determine how well it responds to drug treatment. Cytotoxic chemotherapy targets elements common to all nucleated human cells, such as DNA and microtubules, yet it selectively kills tumor cells. Here we show that clinical response to these drugs correlates with, and may be partially governed by, the pretreatment proximity of tumor cell mitochondria to the apoptotic threshold, a property called mitochondrial priming. We used BH3 profiling to measure priming in tumor cells from patients with multiple myeloma, acute myelogenous and lymphoblastic leukemia, and ovarian cancer. This assay measures mitochondrial response to peptides derived from proapoptotic BH3 domains of proteins critical for death signaling to mitochondria. Patients with highly primed cancers exhibited superior clinical response to chemotherapy. In contrast, chemoresistant cancers and normal tissues were poorly primed. Manipulation of mitochondrial priming might enhance the efficacy of cytotoxic agents.


Nature Communications | 2014

Heterogeneity of genomic evolution and mutational profiles in multiple myeloma

Niccolo Bolli; Hervé Avet-Loiseau; David C. Wedge; Peter Van Loo; Ludmil B. Alexandrov; Inigo Martincorena; Kevin J. Dawson; Francesco Iorio; Serena Nik-Zainal; Graham R. Bignell; Jonathan Hinton; Yilong Li; Jose M. C. Tubio; Stuart McLaren; Sarah O’Meara; Adam Butler; Jon Teague; Laura Mudie; Elizabeth Anderson; Naim Rashid; Yu-Tzu Tai; Masood A. Shammas; Adam Sperling; Mariateresa Fulciniti; Paul G. Richardson; Giovanni Parmigiani; Florence Magrangeas; Stephane Minvielle; Philippe Moreau; Michel Attal

Multiple myeloma is an incurable plasma cell malignancy with a complex and incompletely understood molecular pathogenesis. Here we use whole-exome sequencing, copy-number profiling and cytogenetics to analyse 84 myeloma samples. Most cases have a complex subclonal structure and show clusters of subclonal variants, including subclonal driver mutations. Serial sampling reveals diverse patterns of clonal evolution, including linear evolution, differential clonal response and branching evolution. Diverse processes contribute to the mutational repertoire, including kataegis and somatic hypermutation, and their relative contribution changes over time. We find heterogeneity of mutational spectrum across samples, with few recurrent genes. We identify new candidate genes, including truncations of SP140, LTB, ROBO1 and clustered missense mutations in EGR1. The myeloma genome is heterogeneous across the cohort, and exhibits diversity in clonal admixture and in dynamics of evolution, which may impact prognostic stratification, therapeutic approaches and assessment of disease response to treatment.


Blood | 2009

Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma

Mariateresa Fulciniti; Pierfrancesco Tassone; Teru Hideshima; Sonia Vallet; Puru Nanjappa; Seth Ettenberg; Zhenxin Shen; Nipun Patel; Yu-Tzu Tai; Dharminder Chauhan; Constantine S. Mitsiades; Rao Prabhala; Noopur Raje; Kenneth C. Anderson; David Stover; Nikhil C. Munshi

Decreased activity of osteoblasts (OBs) contributes to osteolytic lesions in multiple myeloma (MM). The production of the soluble Wnt inhibitor Dickkopf-1 (DKK1) by MM cells inhibits OB activity, and its serum level correlates with focal bone lesions in MM. Therefore, we have evaluated bone anabolic effects of a DKK1 neutralizing antibody (BHQ880) in MM. In vitro BHQ880 increased OB differentiation, neutralized the negative effect of MM cells on osteoblastogenesis, and reduced IL-6 secretion. In a severe combined immunodeficiency (SCID)-hu murine model of human MM, BHQ880 treatment led to a significant increase in OB number, serum human osteocalcin level, and trabecular bone. Although BHQ880 had no direct effect on MM cell growth, it significantly inhibited growth of MM cells in the presence of bone marrow stromal cells (BMSCs) in vitro. This effect was associated with inhibition of BMSC/MM cell adhesion and production of IL-6. In addition, BHQ880 up-regulated beta-catenin level while down-regulating nuclear factor-kappaB (NF-kappaB) activity in BMSC. Interestingly, we also observed in vivo inhibition of MM cell growth by BHQ880 treatment in the SCID-hu murine model. These results confirm DKK1 as an important therapeutic target in myeloma and provide the rationale for clinical evaluation of BHQ880 to improve bone disease and to inhibit MM growth.


Blood | 2013

MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction

Lian Xu; Zachary R. Hunter; Guang Yang; Yangsheng Zhou; Yang Cao; Xia Liu; Enrica Morra; Alessandra Trojani; Antonino Greco; Luca Arcaini; Marzia Varettoni; Jennifer R. Brown; Yu-Tzu Tai; Kenneth C. Anderson; Nikhil C. Munshi; Christopher J. Patterson; Robert Manning; Christina Tripsas; Neal I. Lindeman; Steven P. Treon

By whole-genome and/or Sanger sequencing, we recently identified a somatic mutation (MYD88 L265P) that stimulates nuclear factor κB activity and is present in >90% of Waldenström macroglobulinemia (WM) patients. MYD88 L265P was absent in 90% of immunoglobulin M (IgM) monoclonal gammopathy of undetermined significance (MGUS) patients. We therefore developed conventional and real-time allele-specific polymerase chain reaction (AS-PCR) assays for more sensitive detection and quantification of MYD88 L265P. Using either assay, MYD88 L265P was detected in 97 of 104 (93%) WM and 13 of 24 (54%) IgM MGUS patients and was either absent or rarely expressed in samples from splenic marginal zone lymphoma (2/20; 10%), CLL (1/26; 4%), multiple myeloma (including IgM cases, 0/14), and immunoglobulin G MGUS (0/9) patients as well as healthy donors (0/40; P < 1.5 × 10(-5) for WM vs other cohorts). Real-time AS-PCR identified IgM MGUS patients progressing to WM and showed a high rate of concordance between MYD88 L265P ΔCT and BM disease involvement (r = 0.89, P = .008) in WM patients undergoing treatment. These studies identify MYD88 L265P as a widely present mutation in WM and IgM MGUS patients using highly sensitive and specific AS-PCR assays with potential use in diagnostic discrimination and/or response assessment. The finding of this mutation in many IgM MGUS patients suggests that MYD88 L265P may be an early oncogenic event in WM pathogenesis.


Journal of Biological Chemistry | 2005

Mitochondrial H2O2 regulates the angiogenic phenotype Via PTEN oxidation

Kip M. Connor; Sita Subbaram; Kevin Regan; Kristin Nelson; Joseph E. Mazurkiewicz; Peter J. Bartholomew; Andrew E. Aplin; Yu-Tzu Tai; Julio A. Aguirre-Ghiso; Sonia C. Flores; j. Andres Melendez

Recent studies have demonstrated that the tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome 10), the antagonist of the phosphosphoinositol-3-kinase (PI3K) signaling cascade, is susceptible to H2O2-dependent oxidative inactivation. This study describes the use of redox-engineered cell lines to identify PTEN as sensitive to oxidative inactivation by mitochondrial H2O2. Increases in the steady state production of mitochondrial derived H2O2, as a result of manganese superoxide dismutase (Sod2) overexpression, led to PTEN oxidation that was reversed by the coexpression of the H2O2-detoxifying enzyme catalase. The accumulation of an oxidized inactive fraction of PTEN favored the formation of phosphatidylinositol 3,4,5-triphosphate at the plasma membrane, resulting in increased activation of Akt and modulation of its downstream targets. PTEN oxidation in response to mitochondrial H2O2 enhanced PI3K signaling, leading to increased expression of the key regulator of angiogenesis, vascular endothelial growth factor. Overexpression of PTEN prevented the H2O2-dependent increase in vascular endothelial growth factor promoter activity and immunoreactive protein, whereas a mutant PTEN (G129R), lacking phosphatase activity, did not. Furthermore, mitochondrial generation of H2O2 by Sod2 promoted endothelial cell sprouting in a three-dimensional in vitro angiogenesis assay that was attenuated by catalase coexpression or the PI3K inhibitor LY2949002. Moreover, Sod2 overexpression resulted in increased in vivo blood vessel formation that was H2O2-dependent as assessed by the chicken chorioallantoic membrane assay. Our findings provide the first evidence for the involvement of mitochondrial H2O2 in regulating PTEN function and the angiogenic switch, indicating that Sod2 can serve as an alternative physiological source of the potent signaling molecule, H2O2.


Blood | 2013

A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia

Guang Yang; Yangsheng Zhou; Xia Liu; Lian Xu; Yang Cao; Robert Manning; Christopher J. Patterson; Sara J. Buhrlage; Nathanael S. Gray; Yu-Tzu Tai; Kenneth C. Anderson; Zachary R. Hunter; Steven P. Treon

Myeloid differentiation factor 88 (MYD88) L265P somatic mutation is highly prevalent in Waldenström macroglobulinemia (WM) and supports malignant growth through nuclear factor κB (NF-κB). The signaling cascade(s) by which MYD88 L265P promotes NF-κB activation in WM remain unclear. By lentiviral knockdown or use of a MYD88 inhibitor, decreased phosphorylation of the NF-κB gatekeeper IκBα and survival occurred in MYD88 L265P-expressing WM cells. Conversely, WM cells engineered to overexpress MYD88 L265P showed enhanced survival. Coimmunoprecipitation studies identified Bruton tyrosine kinase (BTK) complexed to MYD88 in L265P-expressing WM cells, with preferential binding of MYD88 to phosphorylated BTK (pBTK). Increased pBTK was also observed in WM cells transduced to overexpress L265P vs wild-type MYD88. Importantly, MYD88 binding to BTK was abrogated following treatment of MYD88 L265P-expressing cells with a BTK kinase inhibitor. Inhibition of BTK or interleukin-1 receptor-associated kinase 1 and 4 (IRAK-1 and -4) kinase activity induced apoptosis of WM cells, and their combination resulted in more robust inhibition of NF-κB signaling and synergistic WM cell killing. The results establish BTK as a downstream target of MYD88 L265P signaling, and provide a framework for the study of BTK inhibitors alone, and in combination with IRAK inhibitors for the treatment of WM.


Blood | 2010

Elevated IL-17 produced by Th17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma

Rao Prabhala; Dheeraj Pelluru; Mariateresa Fulciniti; Harsha K. Prabhala; Puru Nanjappa; Weihua Song; Christine Pai; Samir B. Amin; Yu-Tzu Tai; Paul G. Richardson; Irene M. Ghobrial; Steven P. Treon; John F. Daley; Kenneth C. Anderson; Jeffery L. Kutok; Nikhil C. Munshi

Elevated cytokines in bone marrow (BM) micro-environment (interleukin-6 [IL-6], transforming growth factor-beta [TGF-beta], and IL-1beta) may play an important role in observed immune dysfunction in multiple myeloma (MM). As IL-6 and TGF-beta are important for the generation of T-helper 17 (T(H)17) cells, we evaluated and observed a significantly elevated baseline and induced frequency of T(h)17 cells in peripheral blood mononuclear cells (PBMCs) and BM mononuclear cells (BMMCs) from MM patients compared with healthy donors. We observed significant increase in levels of serum IL-17, IL-21, IL-22, and IL-23 in blood and BM in MM compared with healthy donors. We also observed that myeloma PBMCs after T(H)17 polarization significantly induced IL-1alpha, IL-13, IL-17, and IL-23 production compared with healthy donor PBMCs. We next observed that IL-17 promotes myeloma cell growth and colony formation via IL-17 receptor, adhesion to bone marrow stromal cells (BMSCs) as well as increased growth in vivo in murine xenograft model of human MM. Additionally, we have observed that combination of IL-17 and IL-22 significantly inhibited the production of T(H)1-mediated cytokines, including interferon-gamma (IFN-gamma), by healthy donor PBMCs. In conclusion, IL-17-producing T(h)17 cells play an important role in MM pathobiology and may be an important therapeutic target for anti-MM activity and to improve immune function.

Collaboration


Dive into the Yu-Tzu Tai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge