Yu Zhong-Yuan
Peking University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu Zhong-Yuan.
Chinese Physics Letters | 2008
Liu Yumin; Yu Zhong-Yuan; Ren Xiao-min
A systematic investigation about the strain distributions around the InAs/GaAs quantum dots using the finite element method is presented. A special attention is paid to influence of an In0.2Ga0.8 As strain reducing layer. The numerical results show that the horizontal- and vertical-strain components and the biaxial strain are reinforced in the InAs quantum dot due to the strain-reducing layer. However, the hydrostatic strain in the quantum dot is reduced. In the framework of eight-band k p theory, we study the band edge modifications due to the presence of a strain reducing layer. The results demonstrate that the strain reducing layer yields the decreasing band gap, i.e., the redshift phenomenon is observed in experiments. Our calculated results show that degree of the redshift will increase with the increasing thickness of the strain-reducing layer. The calculated results can explain the experimental results in the literature, and further confirm that the long wavelength emission used for optical fibre communication is realizable by adjusting the dependent parameters. However, based on the calculated electronic and heavy-hole wave function distributions, we find that the intensity of photoluminescence will exhibits some variations with the increasing thickness of the strain-reducing layer.
Chinese Physics B | 2012
Zhao Long; Lu Peng-Fei; Yu Zhong-Yuan; Ma Shi-Jia; Ding Lu; Liu Jian-Tao
The electronic and magnetic properties of (Mn,C)-codoped ZnO are studied in the Perdew—Burke—Ernzerhof form of generalized gradient approximation of the density functional theory. By investigating five geometrical configurations, we find that Mn doped ZnO exhibits anti-ferromagnetic or spin-glass behaviour, and there are no carriers to mediate the long range ferromagnetic (FM) interaction without acceptor co-doping. We observe that the FM interaction for (Mn,C)-codoped ZnO is due to the hybridization between C 2p and Mn 3d states, which is strong enough to lead to hole-mediated ferromagnetism at room temperature. Meanwhile, we demonstrate that ZnO co-doped with Mn and C has a stable FM ground state and show that the (Mn,C)-codoped ZnO is FM semiconductor with super-high Curie temperature (TC = 5475 K). These results are conducive to the design of dilute magnetic semiconductors with codopants for spintronics applications.
Chinese Physics B | 2013
Ma Shi-Jia; Lu Peng-Fei; Yu Zhong-Yuan; Zhao Long; Li Qiong-Yao; Wu Cheng-Jie; Ding Lu
First-principles calculations were performed to investigate the magnetic properties of Zn(Mn,Li)O based on the Perdew-Burke-Ernzerhof form of the generalized gradient approximation. Antiferromagnetic (AFM) ordering is the ground state in Mn-doped ZnO system without the codopant of Li, while seven different geometrical configurations of Zn(Mn,Li)O prefer stable ferromagnetic (FM) ordering. We found that dopant Li can effectively change the magnetic coupling in the ZnMnO system. The Curie temperature (TC) of FM ordering depends on the geometric configuration, and the highest TC is about 1388 K. The FM stabilization is greatly affected by Mn-Mn distance rather than by the position of dopant Li. We propose that dopant Li mediates FM coupling through a double exchange interaction or an RKKY interaction when Li is located, respectively, near or far from Mn ions.
Chinese Physics B | 2010
Wang Dong-Lin; Yu Zhong-Yuan; Liu Yu-Min; Ye Han; Lu Peng-Fei; Zhao Long; Guo Xiaotao
The equilibrium composition in strained quantum dot is the result of both elastic relaxation and chemical mixing effects, which have a direct relationship to the optical and electronic properties of the quantum-dot-based device. Using the method of moving asymptotes and finite element tools, an efficient technique has been developed to compute the composition profile by minimising the Gibbs free energy in self-assembled alloy quantum dot. In this paper, the composition of dome-shaped GexSi1−x/Si quantum dot is optimized, and the contribution of the different energy to equilibrium composition is discussed. The effect of composition on the critical size for shape transition of pyramid-shaped GeSi quantum dot is also studied.
Chinese Physics B | 2014
Peng Yi-Wei; Yu Zhong-Yuan; Liu Yu-Min; Wu Tie-Sheng; Zhang Wen
We theoretically analyze the steady state emission spectrum and transient temporal dynamics in a coupled biexciton quantum dot (QD)—cavity system. For steady state, a phonon-assisted biexciton—exciton cascade model under continuous wave (CW) excitation is presented to explain the asymmetric QD—cavity emission spectrum intensities (intensities of cavity, exciton, and biexciton emission peak) in off-resonance condition. Results demonstrate that the electron—phonon process is crucial to the asymmetry of emission spectrum intensity. Moreover the transient characteristics of the biexciton—exciton cascade system under pulse excitation show abundant nonlinear temporal dynamic behaviors, including complicated oscillations which are caused by the four-level structure of QD model. We also reveal that under off-resonance condition the cavity outputs are slightly reduced due to the electron—phonon interaction.
Chinese Physics B | 2014
Gong Hui; Liu Yu-Min; Yu Zhong-Yuan; Wu Xiu; Yin Hao-Zhi
Hybrid plasmon waveguides, respectively, with metamaterial substrate and dielectric substrate are investigated and analyzed contrastively with a numerical finite element method. Basic properties, including propagation length Lp, effective mode area Aeff, and energy distribution, are obtained and compared with waveguide geometric parameters at 1.55 μm. For the waveguide with metamaterial substrate, propagation length Lp increases to several tens of microns and effective mode area Aeff is reduced by more than 3 times. Moreover, the near field region is expanded, leading to potential applications in nanophotonics. Therefore, it could be very helpful for improving the integration density in optical chips and developing functional components on a nanometer scale for all optical integrated circuits.
Chinese Physics B | 2015
Ye Han; Peng Yi-Wei; Yu Zhong-Yuan; Zhang Wen; Liu Yu-Min
In this work, we theoretically analyze the few-photon emissions generated in a coupled double quantum dots (CDQDs)-single mode microcavity system, under continuous wave and pulse excitation. Compared with the uncoupled case, strong sub-Poissonian character is achieved in a CDQDs–cavity system at a certain laser frequency. Based on the proposed scheme, single photon generation can be obtained separately under QD–cavity resonant condition and off-resonant condition. For different cavity decay rates, we reveal that laser frequency detunings of minimum second-order autocorrelation function are discrete and can be divided into three regions. Moreover, the non-ideal situation where two QDs are not identical is discussed, indicating the robustness of the proposed scheme, which possesses sub-Poissonian character in a large QD difference variation range.
Chinese Physics B | 2014
Song Xin; Feng Hao; Liu Yu-Min; Yu Zhong-Yuan; Yin Hao-Zhi
By three-dimensional kinetic Monte Carlo simulations, the effects of the temperature, the flux rate, the total coverage and the interruption time on the distribution and the number of self-assembled InAs/GaAs (001) quantum dot (QD) islands are studied, which shows that a higher temperature, a lower flux rate and a longer growth time correspond to a better island distribution. The relations between the number of islands and the temperature and the flux rate are also successfully simulated. It is observed that for the total coverage lower than 0.5 ML, the number of islands decreases with the temperature increasing and other growth parameters fixed and the number of islands increases with the flux rate increasing when the deposition is lower than 0.6 ML and the other parameters are fixed.
Chinese Physics B | 2013
Song Xin; Feng Hao; Liu Yu-Min; Yu Zhong-Yuan
We show nanomechanical force is useful to dynamically control the optical response of self-assembled quantum dots, giving a method to shift electron and heavy hole levels, interval of electron and heavy hole energy levels, and the emission wavelength of quantum dots (QDs). The strain, the electron energy levels, and heavy hole energy levels of InAs/GaAs(001) quantum dots with vertical nanomechanical force are investigated. Both the lattice mismatch and nanomechanical force are considered at the same time. The results show that the hydrostatic and the biaxial strains inside the QDs subjected to nanomechanical force vary with nanomechanical force. That gives the control for tailoring band gaps and optical response. Moreover, due to strain-modified energy, the band edge is also influenced by nanomechanical force. The nanomechanical force is shown to influence the band edge. As is well known, the band offset affects the electronic structure, which shows that the nanomechanical force is proven to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the nanomechanical force can be used to dynamically control the optics of quantum dots.
Chinese Physics B | 2013
Sun Wen-Qian; Liu Yu-Min; Wang Dong-Lin; Han Li-Hong; Guo Xuan; Yu Zhong-Yuan
We investigate the effect of disorder and mechanical deformation on a two-dimensional photonic crystal waveguide. The dispersion characteristics and transmittance of the waveguide are studied using the finite element method. Results show that the geometric change of the dielectric material perpendicular to the light propagation direction has a larger influence on the waveguide characteristics than that parallel to the light propagation direction. Mechanical deformation has an obvious influence on the performance of the waveguide. In particular, longitudinal deformed structure exhibits distinct optical characteristics from the ideal one. Studies on this work will provide useful guideline to the fabrication and practical applications based on photonic crystal waveguides.