Yuannian Jiao
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuannian Jiao.
Nature | 2011
Yuannian Jiao; Norman J. Wickett; Saravanaraj Ayyampalayam; André S. Chanderbali; Lena Landherr; Paula E. Ralph; Lynn P. Tomsho; Yi Hu; Haiying Liang; Pamela S. Soltis; Douglas E. Soltis; Sandra W. Clifton; Scott E. Schlarbaum; Stephan C. Schuster; Hong Ma; Jim Leebens-Mack; Claude W. dePamphilis
Whole-genome duplication (WGD), or polyploidy, followed by gene loss and diploidization has long been recognized as an important evolutionary force in animals, fungi and other organisms, especially plants. The success of angiosperms has been attributed, in part, to innovations associated with gene or whole-genome duplications, but evidence for proposed ancient genome duplications pre-dating the divergence of monocots and eudicots remains equivocal in analyses of conserved gene order. Here we use comprehensive phylogenomic analyses of sequenced plant genomes and more than 12.6 million new expressed-sequence-tag sequences from phylogenetically pivotal lineages to elucidate two groups of ancient gene duplications—one in the common ancestor of extant seed plants and the other in the common ancestor of extant angiosperms. Gene duplication events were intensely concentrated around 319 and 192 million years ago, implicating two WGDs in ancestral lineages shortly before the diversification of extant seed plants and extant angiosperms, respectively. Significantly, these ancestral WGDs resulted in the diversification of regulatory genes important to seed and flower development, suggesting that they were involved in major innovations that ultimately contributed to the rise and eventual dominance of seed plants and angiosperms.
Genome Biology | 2012
Yuannian Jiao; Jim Leebens-Mack; Saravanaraj Ayyampalayam; John E. Bowers; Michael R. McKain; Joel R. McNeal; Megan Rolf; Daniel R. Ruzicka; Eric Wafula; Norman J. Wickett; Xiaolei Wu; Yong Zhang; Jun Wang; Yeting Zhang; Eric J. Carpenter; Michael K. Deyholos; Toni M. Kutchan; André S. Chanderbali; Pamela S. Soltis; Dennis W. Stevenson; Richard McCombie; J. C. Pires; Gane Ka-Shu Wong; Douglas E. Soltis; Claude W. dePamphilis
BackgroundAlthough it is agreed that a major polyploidy event, gamma, occurred within the eudicots, the phylogenetic placement of the event remains unclear.ResultsTo determine when this polyploidization occurred relative to speciation events in angiosperm history, we employed a phylogenomic approach to investigate the timing of gene set duplications located on syntenic gamma blocks. We populated 769 putative gene families with large sets of homologs obtained from public transcriptomes of basal angiosperms, magnoliids, asterids, and more than 91.8 gigabases of new next-generation transcriptome sequences of non-grass monocots and basal eudicots. The overwhelming majority (95%) of well-resolved gamma duplications was placed before the separation of rosids and asterids and after the split of monocots and eudicots, providing strong evidence that the gamma polyploidy event occurred early in eudicot evolution. Further, the majority of gene duplications was placed after the divergence of the Ranunculales and core eudicots, indicating that the gamma appears to be restricted to core eudicots. Molecular dating estimates indicate that the duplication events were intensely concentrated around 117 million years ago.ConclusionsThe rapid radiation of core eudicot lineages that gave rise to nearly 75% of angiosperm species appears to have occurred coincidentally or shortly following the gamma triplication event. Reconciliation of gene trees with a species phylogeny can elucidate the timing of major events in genome evolution, even when genome sequences are only available for a subset of species represented in the gene trees. Comprehensive transcriptome datasets are valuable complements to genome sequences for high-resolution phylogenomic analysis.
The Plant Cell | 2014
Yuannian Jiao; Jingping Li; Haibao Tang; Andrew H. Paterson
Whole-genome duplication (WGD) is a primary source of genetic material for evolutionary variation. This work compares the genomes of four monocots and two eudicots using integrated phylogenomic and syntenic analyses, revealing an ancient WGD that shaped the genomes of all commelinid monocots, including grasses, bromeliads, bananas, gingers, palms, and other economically important plants. Unraveling widespread polyploidy events throughout plant evolution is a necessity for inferring the impacts of whole-genome duplication (WGD) on speciation, functional innovations, and to guide identification of true orthologs in divergent taxa. Here, we employed an integrated syntenic and phylogenomic analyses to reveal an ancient WGD that shaped the genomes of all commelinid monocots, including grasses, bromeliads, bananas (Musa acuminata), ginger, palms, and other plants of fundamental, agricultural, and/or horticultural interest. First, comprehensive phylogenomic analyses revealed 1421 putative gene families that retained ancient duplication shared by Musa (Zingiberales) and grass (Poales) genomes, indicating an ancient WGD in monocots. Intergenomic synteny blocks of Musa and Oryza were investigated, and 30 blocks were shown to be duplicated before Musa-Oryza divergence an estimated 120 to 150 million years ago. Synteny comparisons of four monocot (rice [Oryza sativa], sorghum [Sorghum bicolor], banana, and oil palm [Elaeis guineensis]) and two eudicot (grape [Vitis vinifera] and sacred lotus [Nelumbo nucifera]) genomes also support this additional WGD in monocots, herein called Tau (τ). Integrating synteny and phylogenomic comparisons achieves better resolution of ancient polyploidy events than either approach individually, a principle that is exemplified in the disambiguation of a WGD series of rho (ρ)-sigma (σ)-tau (τ) in the grass lineages that echoes the alpha (α)-beta (β)-gamma (γ) series previously revealed in the Arabidopsis thaliana lineage.
Philosophical Transactions of the Royal Society B | 2014
Yuannian Jiao; Andrew H. Paterson
The occurrence of polyploidy in land plant evolution has led to an acceleration of genome modifications relative to other crown eukaryotes and is correlated with key innovations in plant evolution. Extensive genome resources provide for relating genomic changes to the origins of novel morphological and physiological features of plants. Ancestral gene contents for key nodes of the plant family tree are inferred. Pervasive polyploidy in angiosperms appears likely to be the major factor generating novel angiosperm genes and expanding some gene families. However, most gene families lose most duplicated copies in a quasi-neutral process, and a few families are actively selected for single-copy status. One of the great challenges of evolutionary genomics is to link genome modifications to speciation, diversification and the morphological and/or physiological innovations that collectively compose biodiversity. Rapid accumulation of genomic data and its ongoing investigation may greatly improve the resolution at which evolutionary approaches can contribute to the identification of specific genes responsible for particular innovations. The resulting, more ‘particulate’ understanding of plant evolution, may elevate to a new level fundamental knowledge of botanical diversity, including economically important traits in the crop plants that sustain humanity.
Genome Biology | 2011
Andrea Zuccolo; John E. Bowers; James C. Estill; Zhiyong Xiong; Meizhong Luo; Aswathy Sebastian; Jose Luis Goicoechea; Kristi Collura; Yeisoo Yu; Yuannian Jiao; Jill M. Duarte; Haibao Tang; Saravanaraj Ayyampalayam; Steve Rounsley; Dave Kudrna; Andrew H. Paterson; J. C. Pires; André S. Chanderbali; Douglas E. Soltis; Srikar Chamala; Brad Barbazuk; Pamela S. Soltis; Victor A. Albert; Hong Ma; Dina F. Mandoli; Jody Banks; John E. Carlson; Jeffrey Tomkins; Claude W. dePamphilis; Rod A. Wing
BackgroundRecent phylogenetic analyses have identified Amborella trichopoda, an understory tree species endemic to the forests of New Caledonia, as sister to a clade including all other known flowering plant species. The Amborella genome is a unique reference for understanding the evolution of angiosperm genomes because it can serve as an outgroup to root comparative analyses. A physical map, BAC end sequences and sample shotgun sequences provide a first view of the 870 Mbp Amborella genome.ResultsAnalysis of Amborella BAC ends sequenced from each contig suggests that the density of long terminal repeat retrotransposons is negatively correlated with that of protein coding genes. Syntenic, presumably ancestral, gene blocks were identified in comparisons of the Amborella BAC contigs and the sequenced Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa genomes. Parsimony mapping of the loss of synteny corroborates previous analyses suggesting that the rate of structural change has been more rapid on lineages leading to Arabidopsis and Oryza compared with lineages leading to Populus and Vitis. The gamma paleohexiploidy event identified in the Arabidopsis, Populus and Vitis genomes is shown to have occurred after the divergence of all other known angiosperms from the lineage leading to Amborella.ConclusionsWhen placed in the context of a physical map, BAC end sequences representing just 5.4% of the Amborella genome have facilitated reconstruction of gene blocks that existed in the last common ancestor of all flowering plants. The Amborella genome is an invaluable reference for inferences concerning the ancestral angiosperm and subsequent genome evolution.
BMC Evolutionary Biology | 2013
Yeting Zhang; Mónica Fernández-Aparicio; Eric Wafula; Malay Das; Yuannian Jiao; Norman J. Wickett; Loren A. Honaas; Paula E. Ralph; Martin F. Wojciechowski; Michael P. Timko; John I. Yoder; James H. Westwood; Claude W. dePamphilis
BackgroundParasitic plants, represented by several thousand species of angiosperms, use modified structures known as haustoria to tap into photosynthetic host plants and extract nutrients and water. As a result of their direct plant-plant connections with their host plant, parasitic plants have special opportunities for horizontal gene transfer, the nonsexual transmission of genetic material across species boundaries. There is increasing evidence that parasitic plants have served as recipients and donors of horizontal gene transfer (HGT), but the long-term impacts of eukaryotic HGT in parasitic plants are largely unknown.ResultsHere we show that a gene encoding albumin 1 KNOTTIN-like protein, closely related to the albumin 1 genes only known from papilionoid legumes, where they serve dual roles as food storage and insect toxin, was found in Phelipanche aegyptiaca and related parasitic species of family Orobanchaceae, and was likely acquired by a Phelipanche ancestor via HGT from a legume host based on phylogenetic analyses. The KNOTTINs are well known for their unique “disulfide through disulfide knot” structure and have been extensively studied in various contexts, including drug design. Genomic sequences from nine related parasite species were obtained, and 3D protein structure simulation tests and evolutionary constraint analyses were performed. The parasite gene we identified here retains the intron structure, six highly conserved cysteine residues necessary to form a KNOTTIN protein, and displays levels of purifying selection like those seen in legumes. The albumin 1 xenogene has evolved through >150 speciation events over ca. 16 million years, forming a small family of differentially expressed genes that may confer novel functions in the parasites. Moreover, further data show that a distantly related parasitic plant, Cuscuta, obtained two copies of albumin 1 KNOTTIN-like genes from legumes through a separate HGT event, suggesting that legume KNOTTIN structures have been repeatedly co-opted by parasitic plants.ConclusionsThe HGT-derived albumins in Phelipanche represent a novel example of how plants can acquire genes from other plants via HGT that then go on to duplicate, evolve, and retain the specialized features required to perform a unique host-derived function.
Plant Physiology | 2016
Hueytyng Lee; Agnieszka A. Golicz; Philipp E. Bayer; Yuannian Jiao; Haibao Tang; Andrew H. Paterson; Gaurav Sablok; Rahul R. Krishnaraj; Chon-Kit Kenneth Chan; Jacqueline Batley; Gary A. Kendrick; Anthony William Larkum; Peter J. Ralph; David Edwards
Adaptation of seagrass to the marine environment involves modification and loss of conserved plant genes. Seagrasses are marine angiosperms that evolved from land plants but returned to the sea around 140 million years ago during the early evolution of monocotyledonous plants. They successfully adapted to abiotic stresses associated with growth in the marine environment, and today, seagrasses are distributed in coastal waters worldwide. Seagrass meadows are an important oceanic carbon sink and provide food and breeding grounds for diverse marine species. Here, we report the assembly and characterization of the Zostera muelleri genome, a southern hemisphere temperate species. Multiple genes were lost or modified in Z. muelleri compared with terrestrial or floating aquatic plants that are associated with their adaptation to life in the ocean. These include genes for hormone biosynthesis and signaling and cell wall catabolism. There is evidence of whole-genome duplication in Z. muelleri; however, an ancient pan-commelinid duplication event is absent, highlighting the early divergence of this species from the main monocot lineages.
BMC Plant Biology | 2013
Barbara J Bliss; Stefan Wanke; Abdelali Barakat; Saravanaraj Ayyampalayam; Norman J. Wickett; P. Kerr Wall; Yuannian Jiao; Lena Landherr; Paula E. Ralph; Yi Hu; Christoph Neinhuis; Jim Leebens-Mack; Kathiravetpilla Arumuganathan; Sandra W. Clifton; Siela N. Maximova; Hong Ma; Claude W. dePamphilis
BackgroundPrevious studies in basal angiosperms have provided insight into the diversity within the angiosperm lineage and helped to polarize analyses of flowering plant evolution. However, there is still not an experimental system for genetic studies among basal angiosperms to facilitate comparative studies and functional investigation. It would be desirable to identify a basal angiosperm experimental system that possesses many of the features found in existing plant model systems (e.g., Arabidopsis and Oryza).ResultsWe have considered all basal angiosperm families for general characteristics important for experimental systems, including availability to the scientific community, growth habit, and membership in a large basal angiosperm group that displays a wide spectrum of phenotypic diversity. Most basal angiosperms are woody or aquatic, thus are not well-suited for large scale cultivation, and were excluded. We further investigated members of Aristolochiaceae for ease of culture, life cycle, genome size, and chromosome number. We demonstrated self-compatibility for Aristolochia elegans and A. fimbriata, and transformation with a GFP reporter construct for Saruma henryi and A. fimbriata. Furthermore, A. fimbriata was easily cultivated with a life cycle of just three months, could be regenerated in a tissue culture system, and had one of the smallest genomes among basal angiosperms. An extensive multi-tissue EST dataset was produced for A. fimbriata that includes over 3.8 million 454 sequence reads.ConclusionsAristolochia fimbriata has numerous features that facilitate genetic studies and is suggested as a potential model system for use with a wide variety of technologies. Emerging genetic and genomic tools for A. fimbriata and closely related species can aid the investigation of floral biology, developmental genetics, biochemical pathways important in plant-insect interactions as well as human health, and various other features present in early angiosperms.
Archive | 2013
Ray Ming; Robert VanBuren; Yanling Liu; Mei Yang; Yuepeng Han; Leiting Li; Qiong Zhang; Min-Jeong Kim; Michael C. Schatz; Michael S. Campbell; Jingping Li; John E. Bowers; Haibao Tang; Eric Lyons; Ann A. Ferguson; Giuseppe Narzisi; David R. Nelson; Crysten E. Blaby-Haas; Andrea R. Gschwend; Yuannian Jiao; Joshua P. Der; Fanchang Zeng; Jennifer Han; Xiang Min; Karen A. Hudson; Ratnesh Singh; Aleel K. Grennan; Steven J. Karpowicz; Jennifer R. Watling; Kikukatsu Ito
BackgroundSacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan.ResultsThe genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101× and 5.2×. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment.ConclusionsThe slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.
Archive | 2013
Ray Ming; Robert VanBuren; Yanling Liu; Mei Yang; Yuepeng Han; Leiting Li; Qiong Zhang; Min-Jeong Kim; Michael C. Schatz; Michael S. Campbell; Jingping Li; John E. Bowers; Haibao Tang; Eric Lyons; Ann A. Ferguson; Giuseppe Narzisi; David R. Nelson; Crysten E. Blaby-Haas; Andrea R. Gschwend; Yuannian Jiao; Joshua P. Der; Fanchang Zeng; Jennifer Han; Jia Min Xiang; Karen A. Hudson; Ratnesh Singh; Aleel K. Grennan; Steven J. Karpowicz; Jennifer R. Watling; Kikukatsu Ito
BackgroundSacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan.ResultsThe genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101× and 5.2×. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment.ConclusionsThe slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.