Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuefei Huang is active.

Publication


Featured researches published by Yuefei Huang.


Geophysical Research Letters | 2014

The contribution of reduction in evaporative cooling to higher surface air temperatures during drought

Dongqin Yin; Michael L. Roderick; Guy Leech; Fubao Sun; Yuefei Huang

This research was supported by the Australian Research Council (CE11E0098), the National Natural Science Foundation of China (91125018), and the China Scholarship Council (201306210089).


Geophysical Research Letters | 2014

The effect of vapor pressure deficit on water use efficiency at the subdaily time scale

Sha Zhou; Bofu Yu; Yuefei Huang; Guangqian Wang

Water use efficiency is a critical index for describing carbon-water coupling in terrestrial ecosystems. However, the nonlinear effect of vapor pressure deficit (VPD) on carbon-water coupling has not been fully considered. To improve the relationship between gross primary production (GPP) and evapotranspiration (ET) at the subdaily time scale, we propose a new underlying water use efficiency (uWUE = GPP · VPD0.5/ET) and a hysteresis model to minimize time lags among GPP, ET, and VPD. Half-hourly data were used to validate uWUE for seven vegetation types from 42 AmeriFlux sites. Correlation analysis shows that the GPP · VPD0.5 and ET relationship (r = 0.844) is better than that between GPP · VPD and ET (r = 0.802). The hysteresis model supports the GPP · VPD0.5 and ET relationship. As uWUE is related to CO2 concentration, its use can improve estimates of GPP and ET and help understand the effect of CO2 fertilization on carbon storage and water loss.


Water Resources Research | 2016

Partitioning evapotranspiration based on the concept of underlying water use efficiency

Sha Zhou; Bofu Yu; Yao Zhang; Yuefei Huang; Guangqian Wang

Evapotranspiration (ET) is dominated by transpiration (T) in the terrestrial water cycle. However, continuous measurement of transpiration is still difficult, and the effect of vegetation on ET partitioning is unclear. The concept of underlying water use efficiency (uWUE) was used to develop a new method for ET partitioning by assuming that the maximum, or the potential uWUE is related to T while the averaged or apparent uWUE is related to ET. T/ET was thus estimated as the ratio of the apparent over the potential uWUE using half-hourly flux data from 17 AmeriFlux sites. The estimated potential uWUE was shown to be essentially constant for 14 of the 17 sites, and was broadly consistent with the uWUE evaluated at the leaf scale. The annual T/ET was the highest for croplands, i.e., 0.69 for corn and 0.62 for soybean, followed by grasslands (0.60) and evergreen needle leaf forests (0.56), and was the lowest for deciduous broadleaf forests (0.52). The enhanced vegetation index (EVI) was shown to be significantly correlated with T/ET and could explain about 75% of the variation in T/ET among the 71 site-years. The coefficients of determination between EVI and T/ET were 0.84 and 0.82 for corn and soybean, respectively, and 0.77 for deciduous broadleaf forests and grasslands, but only 0.37 for evergreen needle leaf forests. This ET partitioning method is sound in principle and simple to apply in practice, and would enhance the value and role of global FLUXNET in estimating T/ET variations and monitoring ecosystem dynamics.


Geophysical Research Letters | 2015

The complementary relationship and generation of the Budyko functions

Sha Zhou; Bofu Yu; Yuefei Huang; Guangqian Wang

The Budyko hypothesis states that the ratio of the actual evapotranspiration over precipitation (E/P) is fundamentally related to the ratio of the potential evapotranspiration over precipitation (E0/P). A number of Budyko functions have been proposed to describe such a relationship between E0/P and E/P. There is, however, no simple method to generate Budyko functions that meet the water and energy constraints. This study showed analytically that for any Budyko function, the sum of elasticity of evapotranspiration with respect to potential evapotranspiration and that with respect to precipitation is equal to unity. This complementary relationship for sensitivity of evapotranspiration has important implications for evaluating hydrologic impact of change in climate and/or catchment characteristics. More importantly, this study found a function that is monotonically increasing with simple limiting properties. This function can be used to generate numerous valid Budyko functions and can also be used to test the validity of the existing Budyko functions.


Journal of Geophysical Research | 2015

Daily underlying water use efficiency for AmeriFlux sites

Sha Zhou; Bofu Yu; Yuefei Huang; Guangqian Wang

Water use efficiency (WUE) is a crucial parameter to describe the interrelationship between gross primary production (GPP) and evapotranspiration (ET). Incorporating the nonlinear effect of vapor pressure deficit (VPD), underlying WUE (uWUE = GPP · VPD0.5/ET) is better than inherent WUE (IWUE = GPP · VPD/ET) at the half-hourly time scale. However, appropriateness of uWUE has not yet been evaluated at the daily time scale. To determine whether uWUE is better than IWUE, daily data for seven vegetation types from 34 AmeriFlux sites were used to validate uWUE at the daily time scale. First, daily mean VPD was shown to be a good substitute for the effective VPD that was required to preserve daily GPP totals. Second, an optimal exponent, k*, corresponding to the best linear relationship between GPP · VPDk* and ET, was about 0.55 both at half-hourly and daily time scales. Third, correlation coefficient between GPP · VPDk and ET showed that uWUE (k = 0.5 and r = 0.85) was a better approximation of the optimal WUE (k = k* and r = 0.86) than IWUE (k = 1 and r = 0.81) at the daily scale. Finally, when yearly uWUE was used to predict daily GPP from daily ET and mean VPD, uWUE worked considerably better than IWUE. Comparing observed and predicted daily GPP, the average correlation coefficient and Nash-Sutcliffe coefficient of efficiency were 0.81 and 0.59, respectively, using yearly uWUE, and only 0.59 and −0.83 using yearly IWUE. As a nearly optimal WUE, uWUE consistently outperformed IWUE and could be used to evaluate the effects of global warming and elevated atmosphere CO2 on carbon assimilation and evapotranspiration.


Water Resources Research | 2016

A new method to partition climate and catchment effect on the mean annual runoff based on the Budyko complementary relationship

Sha Zhou; Bofu Yu; Lu Zhang; Yuefei Huang; Ming Pan; Guangqian Wang

Effect of climate change and catchment change on the long-term water balance is of considerable interest at a range of spatial scales. The total differential of runoff within the Budyko framework, which has been widely used to attribute the change in runoff to the effect of climate and catchment changes, is not precise in that there is always some residual between the observed and estimated change in runoff. The objective of this study is to propose and evaluate a new partition method based on the Budyko complementary relationship for runoff. Algebraic identities have ensured that the change in runoff can be decomposed into two components precisely without any residuals using this complementary method. In addition, the complementary method allows estimation of the upper and lower bounds of the climate effect and catchment effect. The new method was compared with the total differential method and an extrapolation method for 15 catchments in Australia. Results show that the average range of the catchment effect using the complementary method was 6.7 mm for 14 of the 15 catchments, which is much smaller than that estimated with the total differential method (51.5mm). The average of the upper and lower bounds was shown to be in good agreement with the effect of climate and catchment changes estimated using the extrapolation method (R2 = 0.98 for both). Correlation analysis indicates that the average of these bounds is the best estimate of the magnitude of the climate and catchment effect for the 15 catchments examined. This article is protected by copyright. All rights reserved.


Scientific Reports | 2017

Dominant role of plant physiology in trend and variability of gross primary productivity in North America

Sha Zhou; Yao Zhang; Philippe Ciais; Xiangming Xiao; Yiqi Luo; Kelly K. Caylor; Yuefei Huang; Guangqian Wang

Annual gross primary productivity (GPP) varies considerably due to climate-induced changes in plant phenology and physiology. However, the relative importance of plant phenology and physiology on annual GPP variation is not clear. In this study, a Statistical Model of Integrated Phenology and Physiology (SMIPP) was used to evaluate the relative contributions of maximum daily GPP (GPPmax) and the start and end of growing season (GSstart and GSend) to annual GPP variability, using a regional GPP product in North America during 2000–2014 and GPP data from 24 AmeriFlux sites. Climatic sensitivity of the three indicators was assessed to investigate the climate impacts on plant phenology and physiology. The SMIPP can explain 98% of inter-annual variability of GPP over mid- and high latitudes in North America. The long-term trend and inter-annual variability of GPP are dominated by GPPmax both at the ecosystem and regional scales. During warmer spring and autumn, GSstart is advanced and GSend delayed, respectively. GPPmax responds positively to summer temperature over high latitudes (40–80°N), but negatively in mid-latitudes (25–40°N). This study demonstrates that plant physiology, rather than phenology, plays a dominant role in annual GPP variability, indicating more attention should be paid to physiological change under futher climate change.


Global Biogeochemical Cycles | 2017

Response of Water Use Efficiency to Global Environmental Change Based on Output From Terrestrial Biosphere Models

Sha Zhou; Bofu Yu; Christopher R. Schwalm; Philippe Ciais; Yao Zhang; Joshua B. Fisher; Anna M. Michalak; Weile Wang; Benjamin Poulter; Deborah N. Huntzinger; Shuli Niu; Jiafu Mao; Atul K. Jain; Daniel M. Ricciuto; Xiaoying Shi; Akihiko Ito; Yaxing Wei; Yuefei Huang; Guangqian Wang

Author(s): Zhou, S; Yu, B; Schwalm, CR; Ciais, P; Zhang, Y; Fisher, JB; Michalak, AM; Wang, W; Poulter, B; Huntzinger, DN; Niu, S; Mao, J; Jain, A; Ricciuto, DM; Shi, X; Ito, A; Wei, Y; Huang, Y; Wang, G | Abstract: ©2017. American Geophysical Union. All Rights Reserved. Water use efficiency (WUE), defined as the ratio of gross primary productivity and evapotranspiration at the ecosystem scale, is a critical variable linking the carbon and water cycles. Incorporating a dependency on vapor pressure deficit, apparent underlying WUE (uWUE) provides a better indicator of how terrestrial ecosystems respond to environmental changes than other WUE formulations. Here we used 20th century simulations from four terrestrial biosphere models to develop a novel variance decomposition method. With this method, we attributed variations in apparent uWUE to both the trend and interannual variation of environmental drivers. The secular increase in atmospheric CO2 explained a clear majority of total variation (66 ± 32%: mean ± one standard deviation), followed by positive trends in nitrogen deposition and climate, as well as a negative trend in land use change. In contrast, interannual variation was mostly driven by interannual climate variability. To analyze the mechanism of the CO2 effect, we partitioned the apparent uWUE into the transpiration ratio (transpiration over evapotranspiration) and potential uWUE. The relative increase in potential uWUE parallels that of CO2, but this direct CO2 effect was offset by 20 ± 4% by changes in ecosystem structure, that is, leaf area index for different vegetation types. However, the decrease in transpiration due to stomatal closure with rising CO2 was reduced by 84% by an increase in leaf area index, resulting in small changes in the transpiration ratio. CO2 concentration thus plays a dominant role in driving apparent uWUE variations over time, but its role differs for the two constituent components: potential uWUE and transpiration.


Advances in Meteorology | 2015

Identifying Vegetation Dynamics and Sensitivities in Response to Water Resources Management in the Heihe River Basin in China

Dongqin Yin; Xiang Li; Yuefei Huang; Yuan Si; Rui Bai

The Heihe River Basin, the second largest inland river basin in China, plays a vital role in the ecological sustainability of the Hexi Corridor. However, the requirements for regional economic development and ecological balance cannot be fully met due to water resource shortage and overexploitation induced by an extremely dry climate and population growth, especially in the middle and lower basins. Thus, environmental conservation projects that reallocate water resources have been planned and implemented step by step since 2001. The aim of this study is to evaluate ecosystem restoration benefits by identifying vegetation dynamics and sensitivities. The MODIS Normalized Difference Vegetation Index (NDVI) and its derivative indices, coupled with Geographic Information System (GIS), are introduced to explore ecosystem evolution at the pixel level, based on the hydrological and meteorological data in the whole region at varying temporal and spatial scales. Results indicate there are slight vegetation restoration trends in the upper, middle, and lower basin; the results of correlation analyses between vegetation and runoff into the lower basin suggest that the impact of a water supplement lasts at most three years, and engineering or nonengineering measures should be maintained for permanent ecosystem recovery.


PLOS ONE | 2018

Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework

Yuan Si; Xiang Li; Dongqin Yin; Ronghua Liu; Jiahua Wei; Yuefei Huang; Tiejian Li; Jiahong Liu; Shenglong Gu; Guangqian Wang

The hydropower system in the Upper Yellow River (UYR), one of the largest hydropower bases in China, plays a vital role in the energy structure of the Qinghai Power Grid. Due to management difficulties, there is still considerable room for improvement in the joint operation of this system. This paper presents a general LINGO-based integrated framework to study the operation of the UYR hydropower system. The framework is easy to use for operators with little experience in mathematical modeling, takes full advantage of LINGO’s capabilities (such as its solving capacity and multi-threading ability), and packs its three layers (the user layer, the coordination layer, and the base layer) together into an integrated solution that is robust and efficient and represents an effective tool for data/scenario management and analysis. The framework is general and can be easily transferred to other hydropower systems with minimal effort, and it can be extended as the base layer is enriched. The multi-objective model that represents the trade-off between power quantity (i.e., maximum energy production) and power reliability (i.e., firm output) of hydropower operation has been formulated. With equivalent transformations, the optimization problem can be solved by the nonlinear programming (NLP) solvers embedded in the LINGO software, such as the General Solver, the Multi-start Solver, and the Global Solver. Both simulation and optimization are performed to verify the model’s accuracy and to evaluate the operation of the UYR hydropower system. A total of 13 hydropower plants currently in operation are involved, including two pivotal storage reservoirs on the Yellow River, which are the Longyangxia Reservoir and the Liujiaxia Reservoir. Historical hydrological data from multiple years (2000–2010) are provided as input to the model for analysis. The results are as follows. 1) Assuming that the reservoirs are all in operation (in fact, some reservoirs were not operational or did not collect all of the relevant data during the study period), the energy production is estimated as 267.7, 357.5, and 358.3×108 KWh for the Qinghai Power Grid during dry, normal, and wet years, respectively. 2) Assuming that the hydropower system is operated jointly, the firm output can reach 3110 MW (reliability of 100%) and 3510 MW (reliability of 90%). Moreover, a decrease in energy production from the Longyangxia Reservoir can bring about a very large increase in firm output from the hydropower system. 3) The maximum energy production can reach 297.7, 363.9, and 411.4×108 KWh during dry, normal, and wet years, respectively. The trade-off curve between maximum energy production and firm output is also provided for reference.

Collaboration


Dive into the Yuefei Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yao Zhang

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Ciais

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge