Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuehua Ke is active.

Publication


Featured researches published by Yuehua Ke.


Infection and Immunity | 2011

Insight into Bacterial Virulence Mechanisms against Host Immune Response via the Yersinia pestis-Human Protein-Protein Interaction Network

Huiying Yang; Yuehua Ke; Jian Wang; Yafang Tan; Sebenzile K. Myeni; Dong Li; Qinghai Shi; Yanfeng Yan; Hui Chen; Zhaobiao Guo; Yanzhi Yuan; Xiaoming Yang; Ruifu Yang; Zongmin Du

ABSTRACT A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.


PLOS ONE | 2013

Impact of Hfq on Global Gene Expression and Intracellular Survival in Brucella melitensis

Mingquan Cui; Tongkun Wang; Jie Xu; Yuehua Ke; Xinying Du; Xitong Yuan; Zhoujia Wang; Chunli Gong; Yubin Zhuang; Shuangshuang Lei; Xiao Su; Xuesong Wang; Liuyu Huang; Zhijun Zhong; Guangneng Peng; Jing Yuan; Zeliang Chen; Yufei Wang

Brucella melitensis is a facultative intracellular bacterium that replicates within macrophages. The ability of brucellae to survive and multiply in the hostile environment of host macrophages is essential to its virulence. The RNA-binding protein Hfq is a global regulator that is involved in stress resistance and pathogenicity. Here we demonstrate that Hfq is essential for stress adaptation and intracellular survival in B. melitensis. A B. melitensis hfq deletion mutant exhibits reduced survival under environmental stresses and is attenuated in cultured macrophages and mice. Microarray-based transcriptome analyses revealed that 359 genes involved in numerous cellular processes were dysregulated in the hfq mutant. From these same samples the proteins were also prepared for proteomic analysis to directly identify Hfq-regulated proteins. Fifty-five proteins with significantly affected expression were identified in the hfq mutant. Our results demonstrate that Hfq regulates many genes and/or proteins involved in metabolism, virulence, and stress responses, including those potentially involved in the adaptation of Brucella to the oxidative, acid, heat stress, and antibacterial peptides encountered within the host. The dysregulation of such genes and/or proteins could contribute to the attenuated hfq mutant phenotype. These findings highlight the involvement of Hfq as a key regulator of Brucella gene expression and facilitate our understanding of the role of Hfq in environmental stress adaptation and intracellular survival of B. melitensis.


PLOS ONE | 2010

Cell membrane is impaired, accompanied by enhanced type III secretion system expression in Yersinia pestis deficient in RovA regulator.

Fengkun Yang; Yuehua Ke; Yafang Tan; Yujing Bi; Qinghai Shi; Huiying Yang; Jinfu Qiu; Xiaoyi Wang; Zhaobiao Guo; Hong Ling; Ruifu Yang; Zongmin Du

Background In the enteropathogenic Yersinia species, RovA regulates the expression of invasin, which is important for enteropathogenic pathogenesis but is inactivated in Yersinia pestis. Investigation of the RovA regulon in Y. pestis at 26°C has revealed that RovA is a global regulator that contributes to virulence in part by the direct regulation of psaEFABC. However, the regulatory roles of RovA in Y. pestis at 37°C, which allows most virulence factors in mammalian hosts to be expressed, are still poorly understood. Methodology/Principal Findings The transcriptional profile of an in-frame rovA mutant of Y. pestis biovar Microtus strain 201 was analyzed under type III secretion system (T3SS) induction conditions using microarray techniques, and it was revealed that many cell-envelope and transport/binding proteins were differentially expressed in the ΔrovA mutant. Most noticeably, many of the T3SS genes, including operons encoding the translocon, needle and Yop (Yersinia outer protein) effectors, were significantly up-regulated. Analysis of Yop proteins confirmed that YopE and YopJ were also expressed in greater amounts in the mutant. However, electrophoresis mobility shift assay results demonstrated that the His-RovA protein could not bind to the promoter sequences of the T3SS genes, suggesting that an indirect regulatory mechanism is involved. Transmission electron microscopy analysis indicated that there are small loose electron dense particle-like structures that surround the outer membrane of the mutant cells. The bacterial membrane permeability to CFSE (carboxyfluorescein diacetate succinimidyl ester) was significantly decreased in the ΔrovA mutant compared to the wild-type strain. Taken together, these results revealed the improper construction and dysfunction of the membrane in the ΔrovA mutant. Conclusions/Significance We demonstrated that the RovA regulator plays critical roles in the construction and functioning of the bacterial membrane, which sheds considerable light on the regulatory functions of RovA in antibiotic resistance and environmental adaptation. The expression of T3SS was upregulated in the ΔrovA mutant through an indirect regulatory mechanism, which is possibly related to the altered membrane construction in the mutant.


Infection and Immunity | 2009

High-Throughput Identification of New Protective Antigens from a Yersinia pestis Live Vaccine by Enzyme-Linked Immunospot Assay

Bei Li; Lei Zhou; Jingyu Guo; Xiaoyi Wang; Bin Ni; Yuehua Ke; Ziwen Zhu; Zhaobiao Guo; Ruifu Yang

ABSTRACT Yersinia pestis, the plague pathogen, is a facultative intracellular bacterium. Cellular immunity plays important roles in defense against infections. The identification of T-cell targets is critical for the development of effective vaccines against intracellular bacteria; however, the function of cellular immunity in protection from plague was not clearly understood. In this study, 261 genes from Y. pestis were selected on the basis of bioinformatics analysis and previous research results for expression in Escherichia coli BL21(DE3). After purification, 101 proteins were qualified for examination of their abilities to induce the production of gamma interferon in mice immunized with live vaccine EV76 by enzyme-linked immunospot assay. Thirty-four proteins were found to stimulate strong T-cell responses. The protective efficiencies for 24 of them were preliminarily evaluated using a mouse plague model. In addition to LcrV, nine proteins (YPO0606, YPO1914, YPO0612, YPO3119, YPO3047, YPO1377, YPCD1.05c, YPO0420, and YPO3720) may provide partial protection against challenge with a low dose (20 times the 50% lethal dose [20× LD50]) of Y. pestis, but only YPO0606 could partially protect mice from infection with Y. pestis at a higher challenge dosage (200× LD50). These proteins would be the potential components for Y. pestis vaccine development.


Frontiers in Microbiology | 2015

Identification of a Novel Small Non-Coding RNA Modulating the Intracellular Survival of Brucella melitensis.

Yufei Wang; Yuehua Ke; Jie Xu; Ligui Wang; Tongkun Wang; Hui Liang; Wei Zhang; Chunli Gong; Jiuyun Yuan; Yubin Zhuang; Chang An; Shuangshuang Lei; Xinying Du; Zhoujia Wang; Wenna Li; Xitong Yuan; Liuyu Huang; Xiaoli Yang; Zeliang Chen

Bacterial small non-coding RNAs (sRNAs) are gene expression modulators respond to environmental changes, stressful conditions, and pathogenesis. In this study, by using a combined bioinformatic and experimental approach, eight novel sRNA genes were identified in intracellular pathogen Brucella melitensis. BSR0602, one sRNA that was highly induced in stationary phase, was further examined and found to modulate the intracellular survival of B. melitensis. BSR0602 was present at very high levels in vitro under stresses similar to those encountered during infection in host macrophages. Furthermore, BSR0602 was found to be highly expressed in the spleens of infected mice, suggesting its potential role in the control of pathogenesis. BSR0602 targets the mRNAs coding for gntR, a global transcriptional regulator, which is required for B. melitensis virulence. Overexpression of BSR0602 results in distinct reduction in the gntR mRNA level. B. melitensis with high level of BSR0602 is defective in bacteria intracellular survival in macrophages and defective in growth in the spleens of infected mice. Therefore, BSR0602 may directly inhibit the expression of gntR, which then impairs Brucellae intracellular survival and contributes to Brucella infection. Our findings suggest that BSR0602 is responsible for bacterial adaptation to stress conditions and thus modulate B. melitensis intracellular survival.


Cellular Microbiology | 2015

Yersinia protein kinase A phosphorylates vasodilator-stimulated phosphoprotein to modify the host cytoskeleton.

Yuehua Ke; Yafang Tan; Na Wei; Fen Yang; Huiying Yang; Shiyang Cao; Xiaohui Wang; Jian Wang; Yanping Han; Yujing Bi; Yujun Cui; Yanfeng Yan; Yajun Song; Xiaoming Yang; Zongmin Du; Ruifu Yang

Pathogenic Yersinia species evolved a type III secretion system that injects a set of effectors into the host cell cytosol to promote infection. One of these effectors, Yersinia protein kinase A (YpkA), is a multidomain effector that harbours a Ser/Thr kinase domain and a guanine dissociation inhibitor (GDI) domain. The intercellular targets of the kinase and GDI domains of YpkA were identified to be Gαq and the small GTPases RhoA and Rac1, respectively, which synergistically induce cytotoxic effects on infected cells. In this study, we demonstrate that vasodilator‐stimulated phosphoprotein (VASP), which is critical for regulation of actin assembly, cell adhesion and motility, is a direct substrate of YpkA kinase activity. Ectopic co‐expression of YpkA and VASP in HEK293T cells leads to the phosphorylation of VASP at S157, and YpkA kinase activity is essential for VASP phosphorylation at this site. Moreover, YpkA directly phosphorylates VASP in in vitro kinase assay. YpkA‐mediated VASP phosphorylation significantly inhibits actin polymerization and promotes the disruption of actin cytoskeleton, which inhibits the phagocytosis. Taken together, our study found a novel molecular mechanism used by YpkA to disrupt cytoskeleton dynamics, thereby promoting the anti‐phagocytosis ability of pathogenic Yersiniae.


BMC Infectious Diseases | 2013

Changes of predominant species/biovars and sequence types of Brucella isolates, Inner Mongolia, China

Yanfen Chen; Yuehua Ke; Yufei Wang; Xitong Yuan; Xiaoyan Zhou; Hai Jiang; Zhoujia Wang; Qing Zhen; Yaqin Yu; Liuyu Huang; Buyun Cui; Zeliang Chen

BackgroundHuman brucellosis incidence in China was divided into 3 stages, high incidence (1950-1960s), decline (1970-1980s) and re-emergence (1990-2000s). Human brucellosis has been reported in all the 32 provinces, of which Inner Mongolia has the highest prevalence, accounting for over 40% of the cases in China. To investigate the etiology alteration of human brucellosis in Inner Mongolia, the species, biovars and genotypes of 60 Brucella isolates from this province were analyzed.MethodsSpecies and biovars of the Brucella strains isolated from outbreaks were determined based on classical identification procedures. Strains were genotyped by multi locus sequence typing (MLST). Sequences of 9 housekeeping genes were obtained and sequence types were defined. The distribution of species, biovars and sequence types (STs) among the three incidence stages were analyzed and compared.ResultsThe three stages of high incidence, decline and re-emergence were predominated by B. melitensis biovar 2 and 3, B. abortus biovar 3, and B. melitensis biovar 1, respectively, implying changes in the predominant biovars. Genotyping by MLST revealed a total of 14 STs. Nine STs (from ST28 to ST36), accounting for 64.3% of all the STs, were newly defined and different from those observed in other countries. Different STs were distributed among the three stages. ST8 was the most common ST in 1950-1960s and 1990-2000s, while ST2 was the most common in 1970-1980s.ConclusionsThe prevalence of biovars and sequence types of Brucella strains from Inner Mongolia has changed over time in the three stages. Compared with those from other countries, new sequence types of Brucella strains exist in China.


PLOS ONE | 2013

Identification of Novel Protein-Protein Interactions of Yersinia pestis Type III Secretion System by Yeast Two Hybrid System

Huiying Yang; Yafang Tan; Tingting Zhang; Liu-Jun Tang; Jian Wang; Yuehua Ke; Zhaobiao Guo; Xiao-Ming Yang; Ruifu Yang; Zongmin Du

Type III secretion system (T3SS) of the plague bacterium Y. pestis encodes a syringe-like structure consisting of more than 20 proteins, which can inject virulence effectors into host cells to modulate the cellular functions. Here in this report, interactions among the possible components in T3SS of Yersinia pestis were identified using yeast mating technique. A total of 57 genes, including all the pCD1-encoded genes except those involved in plasmid replication and partition, pseudogenes, and the putative transposase genes, were subjected to yeast mating analysis. 21 pairs of interaction proteins were identified, among which 9 pairs had been previously reported and 12 novel pairs were identified in this study. Six of them were tested by GST pull down assay, and interaction pairs of YscG-SycD, YscG-TyeA, YscI-YscF, and YopN-YpCD1.09c were successfully validated, suggesting that these interactions might play potential roles in function of Yersinia T3SS. Several potential new interactions among T3SS components could help to understand the assembly and regulation of Yersinia T3SS.


Veterinary Microbiology | 2012

Vaccination with recombinant flagellar proteins FlgJ and FliN induce protection against Brucella abortus 544 infection in BALB/c mice

Xianbo Li; Jie Xu; Yongfei Xie; Yefeng Qiu; Simei Fu; Xitong Yuan; Yuehua Ke; Shuang Yu; Xinying Du; Mingquan Cui; Yanfen Chen; Tongkun Wang; Zhoujia Wang; Yaqing Yu; Kehe Huang; Liuyu Huang; Guangneng Peng; Zeliang Chen; Yufei Wang

Brucella has been considered as a non-motile, facultative intracellular pathogenic bacterium. However, the genome sequences of different Brucella species reveal the presence of the flagellar genes needed for the construction of a functional flagellum. Due to its roles in the interaction between pathogen and host, we hypothesized that some of the flagellar proteins might induce protective immune responses and these proteins will be good subunit vaccine candidates. This study was conducted to screening of protective antigens among these flagellar proteins. Firstly, according to the putative functional roles, a total of 30 flagellar genes of Brucella abortus were selected for in vitro expression. 15 of these flagellar genes were successfully expressed as his-tagged recombinant proteins in Escherichia coli ER2566. Then, these proteins were purified and used to analyze their T cell immunity induction activity by an in vitro gamma interferon (IFN-γ) assay. Five of the flagellar proteins could stimulate significantly higher levels of IFN-γ secretion in splenocytes from S19 immunized mice, indicating their T cell induction activity. Finally, immunogenicity and protection activity of these 5 flagellar proteins were evaluated in BALB/c mice. Results showed that immunization with FlgJ (BAB1_0260) or FliN (BAB2_0122) plus adjuvant could provide protection against B. abortus 544 infection. Furthermore, mice immunized with FlgJ and FliN developed a vigorous immunoglobulin G response, and in vitro stimulation of their splenocytes with immunizing proteins induced the secretion of IFN-γ. Altogether, these data suggest that flagellar proteins FlgJ and FliN are protective antigens that could produce humoral and cell-mediated responses in mice and candidates for use in future studies of vaccination against brucellosis.


Scientific Reports | 2016

Development and Evaluation of a Rapid and Sensitive EBOV-RPA Test for Rapid Diagnosis of Ebola Virus Disease.

Mingjuan Yang; Yuehua Ke; Xuesong Wang; Hang Ren; Wei Liu; Huijun Lu; Wenyi Zhang; Shiwei Liu; Guohui Chang; Shuguang Tian; Lihua Wang; Liuyu Huang; Chao Liu; Ruifu Yang; Zeliang Chen

Confirming Ebola virus disease (EVD), a deadly infectious disease, requires real-time RT-PCR, which takes up to a few hours to yield results. Therefore, a rapid diagnostic assay is imperative for EVD diagnosis. A rapid nucleic acid test based on recombinase polymerase amplification (EBOV-RPA) was developed to specifically detect the 2014 outbreak strains. The EBOV-RPA assay was evaluated by testing samples from suspected EVD patients in parallel with RT-PCR. An EBOV-RPA, which could be completed in 20u2009min, was successfully developed. Of 271 patients who tested positive for Ebola virus by RT-PCR, 264 (sensitivity: 97%, 95% CI: 95.5–99.3%) were positive by EBOV-RPA; 101 of 104 patients (specificity: 97%, 95% CI: 93.9–100%) who tested negative by RT-PCR were also negative by EBOV-RPA. The sensitivity values for samples with a Ct value of <34, which accounted for 95.59% of the samples, was 100%. Discordant samples positive by RT-PCR but negative by EBOV-RPA had significantly high Ct values. Results of external quality assessment samples with EBOV-RPA were 100%, consistent with those of RT-PCR. The EBOV-RPA assay showed 97% sensitivity and 97% specificity for all EVD samples tested, making it a rapid and sensitive test for EVD diagnosis.

Collaboration


Dive into the Yuehua Ke's collaboration.

Top Co-Authors

Avatar

Zeliang Chen

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Yufei Wang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Liuyu Huang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhoujia Wang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Xinying Du

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Mingjuan Yang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Xitong Yuan

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Ruifu Yang

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhijun Zhong

Sichuan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge