Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuehua Zeng is active.

Publication


Featured researches published by Yuehua Zeng.


Bulletin of the Seismological Society of America | 2015

Long-Term Time-Dependent Probabilities for the Third Uniform California Earthquake Rupture Forecast (UCERF3)

Edward H. Field; Glenn P. Biasi; Peter Bird; Timothy E. Dawson; Karen R. Felzer; David A. Jackson; Kaj M. Johnson; Thomas H. Jordan; Christopher Madden; Andrew J. Michael; Kevin Milner; Morgan T. Page; Tom Parsons; Peter M. Powers; Bruce E. Shaw; Wayne Thatcher; Ray J. Weldon; Yuehua Zeng

The 2014 Working Group on California Earthquake Probabilities (WGCEP 2014) presents time-dependent earthquake probabilities for the third Uniform California Earthquake Rupture Forecast (UCERF3). Building on the UCERF3 time-in- dependent model published previously, renewal models are utilized to represent elastic- rebound-implied probabilities. A new methodology has been developed that solves applicability issues in the previous approach for unsegmented models. The new meth- odology also supports magnitude-dependent aperiodicity and accounts for the historic open interval on faults that lack a date-of-last-event constraint. Epistemic uncertainties are represented with a logic tree, producing 5760 different forecasts. Results for a variety of evaluation metrics are presented, including logic-tree sensitivity analyses and comparisons to the previous model (UCERF2). For 30 yr M ! 6:7 probabilities, the most significant changes from UCERF2 are a threefold increase on the Calaveras fault and a threefold decrease on the San Jacinto fault. Such changes are due mostly to differences in the time-independent models (e.g., fault-slip rates), with relaxation of segmentation and inclusion of multifault ruptures being particularly influential. In fact, some UCERF2 faults were simply too long to produce M 6.7 size events given the segmentation assumptions in that study. Probability model differences are also influential, with the implied gains (relative to a Poisson model) being generally higher in UCERF3. Accounting for the historic open interval is one reason. Another is an effective 27% increase in the total elastic-rebound-model weight. The exact factors influencing differences between UCERF2 and UCERF3, as well as the relative im- portance of logic-tree branches, vary throughout the region and depend on the evalu- ation metric of interest. For example, M ! 6:7 probabilities may not be a good proxy for other hazard or loss measures. This sensitivity, coupled with the approximate nature of the model and known limitations, means the applicability of UCERF3 should be evaluated on a case-by-case basis.


Earthquake Spectra | 2015

The 2014 United States National Seismic Hazard Model

Mark D. Petersen; Morgan P. Moschetti; Peter Powers; Charles S. Mueller; Kathleen M. Haller; Arthur Frankel; Yuehua Zeng; Sanaz Rezaeian; Stephen C. Harmsen; Oliver S. Boyd; Ned Field; Rui Chen; Kenneth S. Rukstales; Nico Luco; Russell L. Wheeler; Robert A. Williams; Anna H. Olsen

New seismic hazard maps have been developed for the conterminous United States using the latest data, models, and methods available for assessing earthquake hazard. The hazard models incorporate new information on earthquake rupture behavior observed in recent earthquakes; fault studies that use both geologic and geodetic strain rate data; earthquake catalogs through 2012 that include new assessments of locations and magnitudes; earthquake adaptive smoothing models that more fully account for the spatial clustering of earthquakes; and 22 ground motion models, some of which consider more than double the shaking data applied previously. Alternative input models account for larger earthquakes, more complicated ruptures, and more varied ground shaking estimates than assumed in earlier models. The ground motions, for levels applied in building codes, differ from the previous version by less than ±10% over 60% of the country, but can differ by ±50% in localized areas. The models are incorporated in insurance rates, risk assessments, and as input into the U.S. building code provisions for earthquake ground shaking.


Journal of Geophysical Research | 2015

Crustal deformation in the New Madrid seismic zone and the role of postseismic processes

Oliver S. Boyd; Robert Smalley; Yuehua Zeng

Global Navigation Satellite System data across the New Madrid seismic zone (NMSZ) in the central United States over the period from 2000 through 2014 are analyzed and modeled with several deformation mechanisms including the following: (1) creep on subsurface dislocations, (2) postseismic frictional afterslip and viscoelastic relaxation from the 1811–1812 and 1450 earthquakes in the NMSZ, and (3) regional strain. In agreement with previous studies, a dislocation creeping at about 4 mm/yr between 12 and 20 km depth along the downdip extension of the Reelfoot fault reproduces the observations well. We find that a dynamic model of postseismic frictional afterslip from the 1450 and February 1812 Reelfoot fault events can explain this creep. Kinematic and dynamic models involving the Cottonwood Grove fault provide minimal predictive power. This is likely due to the smaller size of the December 1811 event on the Cottonwood Grove fault and a distribution of stations better suited to constrain localized strain across the Reelfoot fault. Regional compressive strain across the NMSZ is found to be less than 3 × 10−9/yr. If much of the present-day surface deformation results from afterslip, it is likely that many of the earthquakes we see today in the NMSZ are aftershocks from the 1811–1812 New Madrid earthquakes. Despite this conclusion, our results are consistent with observations and models of intraplate earthquake clustering. Given this and the recent paleoseismic history of the region, we suggest that seismic hazard is likely to remain significant.


Seismological Research Letters | 2017

A Synoptic View of the Third Uniform California Earthquake Rupture Forecast (UCERF3)

Edward H. Field; Thomas H. Jordan; Morgan T. Page; Kevin Milner; Bruce E. Shaw; Timothy E. Dawson; Glenn P. Biasi; Tom Parsons; Jeanne L. Hardebeck; Andrew J. Michael; Ray J. Weldon; Peter M. Powers; Kaj M. Johnson; Yuehua Zeng; Karen R. Felzer; Nicholas J. van der Elst; Christopher Madden; Ramon Arrowsmith; M. Werner; Wayne Thatcher

ABSTRACT Probabilistic forecasting of earthquake‐producing fault ruptures informs all major decisions aimed at reducing seismic risk and improving earthquake resilience. Earthquake forecasting models rely on two scales of hazard evolution: long‐term (decades to centuries) probabilities of fault rupture, constrained by stress renewal statistics, and short‐term (hours to years) probabilities of distributed seismicity, constrained by earthquake‐clustering statistics. Comprehensive datasets on both hazard scales have been integrated into the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3). UCERF3 is the first model to provide self‐consistent rupture probabilities over forecasting intervals from less than an hour to more than a century, and it is the first capable of evaluating the short‐term hazards that result from multievent sequences of complex faulting. This article gives an overview of UCERF3, illustrates the short‐term probabilities with aftershock scenarios, and draws some valuable scientific conclusions from the modeling results. In particular, seismic, geologic, and geodetic data, when combined in the UCERF3 framework, reject two types of fault‐based models: long‐term forecasts constrained to have local Gutenberg–Richter scaling, and short‐term forecasts that lack stress relaxation by elastic rebound.


Earthquake Spectra | 2015

Seismic Hazard in the Intermountain West

Kathleen M. Haller; Morgan P. Moschetti; Charles S. Mueller; Sanaz Rezaeian; Mark D. Petersen; Yuehua Zeng

The 2014 national seismic-hazard model for the conterminous United States incorporates new scientific results and important model adjustments. The current model includes updates to the historical catalog, which is spatially smoothed using both fixed-length and adaptive-length smoothing kernels. Fault-source characterization improved by adding faults, revising rates of activity, and incorporating new results from combined inversions of geologic and geodetic data. The update also includes a new suite of published ground motion models. Changes in probabilistic ground motion are generally less than 10% in most of the Intermountain West compared to the prior assessment, and ground-motion hazard in four Intermountain West cities illustrates the range and magnitude of change in the region. Seismic hazard at reference sites in Boise and Reno increased as much as 10%, whereas hazard in Salt Lake City decreased 5–6%. The largest change was in Las Vegas, where hazard increased 32–35%.


Bulletin of the Seismological Society of America | 2016

A Fault‐Based Model for Crustal Deformation, Fault Slip Rates, and Off‐Fault Strain Rate in California

Yuehua Zeng; Zheng-Kang Shen

We invert Global Positioning System (GPS) velocity data to estimate fault slip rates in California using a fault‐based crustal deformation model with geologic constraints. The model assumes buried elastic dislocations across the region using Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault geometries. New GPS velocity and geologic slip‐rate data were compiled by the UCERF3 deformation working group. The result of least‐squares inversion shows that the San Andreas fault slips at 19–22  mm/yr along Santa Cruz to the North Coast, 25–28  mm/yr along the central California creeping segment to the Carrizo Plain, 20–22  mm/yr along the Mojave, and 20–24  mm/yr along the Coachella to the Imperial Valley. Modeled slip rates are 7–16  mm/yr lower than the preferred geologic rates from the central California creeping section to the San Bernardino North section. For the Bartlett Springs section, fault slip rates of 7–9  mm/yr fall within the geologic bounds but are twice the preferred geologic rates. For the central and eastern Garlock, inverted slip rates of 7.5 and 4.9  mm/yr, respectively, match closely with the geologic rates. For the western Garlock, however, our result suggests a low slip rate of 1.7  mm/yr. Along the eastern California shear zone and southern Walker Lane, our model shows a cumulative slip rate of 6.2–6.9  mm/yr across its east–west transects, which is ∼1  mm/yr increase of the geologic estimates. For the off‐coast faults of central California, from Hosgri to San Gregorio, fault slips are modeled at 1–5  mm/yr, similar to the lower geologic bounds. For the off‐fault deformation, the total moment rate amounts to 0.88×1019  N·m/yr, with fast straining regions found around the Mendocino triple junction, Transverse Ranges and Garlock fault zones, Landers and Brawley seismic zones, and farther south. The overall California moment rate is 2.76×1019  N·m/yr, which is a 16% increase compared with the UCERF2 model. Online Material: Table of geological slip rates.


Active Tectonics and Seismic Potential of Alaska | 2013

Toward a Time‐Dependent Probabilistic Seismic Hazard Analysis for Alaska

Oliver S. Boyd; Yuehua Zeng; Charles G. Bufe; Robert L. Wesson; Fred F. Pollitz; Jeanne L. Hardebeck

We report on a time-dependent seismic hazard analysis for Alaska and the Aleutians to complement our recently completed time-independent map. Whereas the time-independent map treats all sources as statistically independent, the time-dependent analysis is based on calculations of the conditional probability of occurrence for the next 50 years by using a Brownian Passage Time model for the seismic sources judged to be characteristic. We then consider how those probabilities are modified by coseismic and postseismic stress changes resulting from large regional earthquakes occurring from 1938 to 2002. Recombining the time-dependent probabilities with time-independent truncated Gutenberg-Richter and smoothed seismicity sources leads to our time-dependent probabilistic seismic hazard results. We find that when accounting for time dependence without stress changes, earthquake probabilities can be significantly altered, reducing probabilities to near zero or increasing them to several times the time-independent values. In addition, accounting for coseismic stress changes tends to have a local influence on earthquake probabilities, whereas postseismic effects can be far-reaching in both time and space. In sum, however, since we combine time-dependent and time-independent sources, the modification to seismic hazard is relatively minor, increasing or decreasing hazard adjacent to characteristic faults by about 10%. Most cities, located far from characteristic faults, are little affected.


Nature Geoscience | 2009

Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake

Zheng-Kang Shen; Jianbao Sun; Peizhen Zhang; Yongge Wan; Min Wang; Roland Bürgmann; Yuehua Zeng; Weijun Gan; Hua Liao; Qingliang Wang


Bulletin of the Seismological Society of America | 2014

Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)—The Time‐Independent Model

Edward H. Field; Ramon Arrowsmith; Glenn P. Biasi; Peter Bird; Timothy E. Dawson; Karen R. Felzer; David D. Jackson; Kaj M. Johnson; Thomas H. Jordan; Christopher Madden; Andrew J. Michael; Kevin Milner; Morgan T. Page; Tom Parsons; Peter M. Powers; Bruce E. Shaw; Wayne Thatcher; Ray J. Weldon; Yuehua Zeng


Chinese Journal of Geophysics | 2003

VISCOELASTIC TRIGGERING BETWEEN LARGE EARTHQUAKES ALONG THE EAST KUNLUN FAULT SYSTEM

Zheng-Kang Shen; Yongge Wan; Weijun Gan; Yuehua Zeng; Qun Ren

Collaboration


Dive into the Yuehua Zeng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward H. Field

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Oliver S. Boyd

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Kaj M. Johnson

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter M. Powers

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Timothy E. Dawson

California Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Tom Parsons

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Wayne Thatcher

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Michael

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge