Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuepeng Pan is active.

Publication


Featured researches published by Yuepeng Pan.


Atmospheric Chemistry and Physics | 2012

Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China

Yuepeng Pan; Wang Ys; Guiqian Tang; D. Wu

Abstract. Emissions of reactive nitrogen (N) species can affect surrounding ecosystems via atmospheric deposition. However, few long-term and multi-site measurements have focused on both the wet and the dry deposition of individual N species in large areas of Northern China. Thus, the magnitude of atmospheric deposition of various N species in Northern China remains uncertain. In this study, the wet and dry atmospheric deposition of different N species was investigated during a three-year observation campaign at ten selected sites in Northern China. The results indicate that N deposition levels in Northern China were high with a ten-site, three-year average of 60.6 kg N ha−1 yr−1. The deposition levels showed spatial and temporal variation in the range of 28.5–100.4 kg N ha−1 yr−1. Of the annual total deposition, 40% was deposited via precipitation, and the remaining 60% was comprised of dry-deposited forms. Compared with gaseous N species, particulate N species were not the major contributor of dry-deposited N; they contributed approximately 10% to the total flux. On an annual basis, oxidized species accounted for 21% of total N deposition, thereby implying that other forms of gaseous N, such as NH3, comprised a dominant portion of the total flux. The contribution of NO3− to N deposition was enhanced in certain urban and industrial areas, possibly due to the fossil fuse combustion. As expected, the total N deposition in Northern China was significantly larger than the values reported by national scale monitoring networks in Europe, North America and East Asia because of high rates of wet deposition and gaseous NH3 dry deposition. Taken together, these findings show that NH3 emissions should be abated to mitigate high N deposition and associated potential impacts on ecosystems in Northern China. The present results improve our understanding of spatio-temporal variations of magnitudes, pathways and species of deposited N in the target areas, and are important not only to inform conservation and regulatory bodies but also to initiate further detailed studies. Uncertainties among current observations underscore the need to quantify the impact of vegetation on dry deposition and to refine the simulation of dry deposition velocity.


Journal of Hazardous Materials | 2014

Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China

Shili Tian; Yuepeng Pan; Zirui Liu; Tianxue Wen; Yuesi Wang

Using size-resolved filter sampling and chemical characterization, high concentrations of water-soluble ions, carbonaceous species and heavy metals were found in both fine (PM2.1) and coarse (PM2.1-9) particles in Beijing during haze events in early 2013. Even on clear days, average mass concentration of submicron particles (PM1.1) was several times higher than that previously measured in most of abroad urban areas. A high concentration of particulate matter on haze days weakens the incident solar radiation, which reduces the generation rate of secondary organic carbon in PM1.1. We show that the peak mass concentration of particles shifted from 0.43-0.65μm on clear days to 0.65-1.1μm on lightly polluted days and to 1.1-2.1μm on heavily polluted days. The peak shifts were also found for the following species: organic carbon, elemental carbon, NH4(+), SO4(2-), NO3(-), K, Cu, Zn, Cd and Pb. Our findings demonstrate that secondary inorganic aerosols (36%) and organic matter (26%) dominated the fine particle mass on heavily polluted days, while their contribution reduced to 29% and 18%, respectively, on clear days. Besides fine particles, anthropogenic chemical species also substantially accumulated in the coarse mode, which suggests that particles with aerodynamic diameter larger than 2.1μm cannot be neglected during severe haze events.


Bulletin of the American Meteorological Society | 2015

The Campaign on Atmospheric Aerosol Research Network of China: CARE-China

Jinyuan Xin; Yuesi Wang; Yuepeng Pan; Dongsheng Ji; Zirui Liu; Tianxue Wen; Yinghong Wang; Xingru Li; Yang Sun; Jie Sun; Pucai Wang; Gehui Wang; Xinming Wang; Zhiyuan Cong; Tao Song; Bo Hu; Lili Wang; Guiqian Tang; Wenkang Gao; Yuhong Guo; Hongyan Miao; Shili Tian; Lu Wang

AbstractBased on a network of field stations belonging to the Chinese Academy of Sciences (CAS), the Campaign on Atmospheric Aerosol Research network of China (CARE-China) was recently established as the country’s first monitoring network for the study of the spatiotemporal distribution of aerosol physical characteristics, chemical components, and optical properties, as well as aerosol gaseous precursors. The network comprises 36 stations in total and adopts a unified approach in terms of the instrumentation, experimental standards, and data specifications. This ongoing project is intended to provide an integrated research platform to monitor online PM2.5 concentrations, nine-size aerosol concentrations and chemical component distributions, nine-size secondary organic aerosol (SOA) component distributions, gaseous precursor concentrations (including SO2, NOx, CO, O3, and VOCs), and aerosol optical properties. The data will be used to identify the sources of regional aerosols, the relative contributions fr...


Environmental Science & Technology | 2016

Reply to Comment on “Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from 15N-Stable Isotope in Size-Resolved Aerosol Ammonium”

Yuepeng Pan; Shili Tian; Dongwei Liu; Yunting Fang; Xiaying Zhu; Qiang Zhang; Bo Zheng; Greg Michalski; Yuesi Wang

Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from N‐Stable Isotope in Size-Resolved Aerosol Ammonium” W appreciate the opportunity to respond to the comments of Chang and Ma regarding our article, and we also hope to further clarify the findings of our work. Their comments on our work focus on the source apportionment of ammonia (NH3) during haze episodes in Beijing. We do not think that their objections are well founded, and their speculations do not change our conclusions.


Science of The Total Environment | 2013

Size-resolved aerosol trace elements at a rural mountainous site in Northern China: importance of regional transport.

Yuepeng Pan; Yuesi Wang; Yang Sun; Shili Tian; Mengtian Cheng

This paper presents an intensive field measurement campaign carried out at the rural mountainous site of Xinglong (960 m a.s.l.) in Northern China during Sep. 3-20 2008. Size-segregated samples were collected daily and analyzed for 25 trace elements (TEs). The majority of the TEs showed comparable concentrations in fine (<2.1 μm) and coarse particles (2.1-9 μm). In addition, elements like K, Mn, Cu, Se, Mo, Ag, Cd, Tl and Pb were accumulated in fine mode whereas Al, Co and Sb were concentrated in a coarse mode. For most of the TEs, their enrichment factor (EF) increased with decreasing particle size from large (>9 μm) to coarse, and to fine, signifying influences by anthropogenic emissions. The observed concentrations of heavy metals in fine particles, with EF values higher than 100, were significantly higher than the historical data recorded in the 1980s and 1990s, reflecting the increasing emissions in the target area. One pronounced event occurred on Sep. 14 when all of the TEs showed a peak, which was associated with regional emissions from both southeast (SE) and southwest (SW) indicated by backward trajectory analysis. This is further supported by the measurements in upwind sites where the concentrations of TEs were several times higher than those in Xinglong, suggesting potential source regions. Episodes of heavy metals were generally characterized by significant enhancements of fine mode and air mass trajectories from SE or SW alone. Taking this finding and factor analysis results together, the metallic episodes were attributable to the long-range transport of regional plumes from coal consumption and nonferrous metal smelting. With the rapid urbanization and industrialization in Northern China, the increasing emissions of TEs will place a great strain on human health and the environment in the downwind regions, thus long-term and multi-site observation with high time resolution are necessary.


Science of The Total Environment | 2015

Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions.

Yuepeng Pan; Shili Tian; Xingru Li; Ying Sun; Yi Li; Gregory R. Wentworth; Yuesi Wang

Public concerns over airborne trace elements (TEs) in metropolitan areas are increasing, but long-term and multi-site observations of size-resolved aerosol TEs in China are still lacking. Here, we identify highly elevated levels of atmospheric TEs in megacities and industrial sites in a Beijing-Tianjin-Hebei urban agglomeration relative to background areas, with the annual mean values of As, Pb, Ni, Cd and Mn exceeding the acceptable limits of the World Health Organization. Despite the spatial variability in concentrations, the size distribution pattern of each trace element was quite similar across the region. Crustal elements of Al and Fe were mainly found in coarse particles (2.1-9 μm), whereas the main fraction of toxic metals, such as Cu, Zn, As, Se, Cd and Pb, was found in submicron particles (<1.1 μm). These toxic metals were enriched by over 100-fold relative to the Earths crust. The size distributions of Na, Mg, K, Ca, V, Cr, Mn, Ni, Mo and Ba were bimodal, with two peaks at 0.43-0.65 μm and 4.7-5.8 μm. The combination of the size distribution information, principal component analysis and air mass back trajectory model offered a robust technique for distinguishing the main sources for airborne TEs, e.g., soil dust, fossil fuel combustion and industrial emissions, at different sites. In addition, higher elemental concentrations coincided with westerly flow, indicating that polluted soil and fugitive dust were major sources of TEs on the regional scale. However, the contribution of coal burning, iron industry/oil combustion and non-ferrous smelters to atmospheric metal pollution in Northern China should be given more attention. Considering that the concentrations of heavy metals associated with fine particles in the target region were significantly higher than those in other Asian sites, the implementations of strict environmental standards in China are required to reduce the amounts of these hazardous pollutants released into the atmosphere.


Analytical Chemistry | 2014

Chemical Method for Nitrogen Isotopic Analysis of Ammonium at Natural Abundance

Dongwei Liu; Yunting Fang; Ying Tu; Yuepeng Pan

We report a new chemical method to determine the (15)N natural abundance (δ(15)N) for ammonium (NH4(+)) in freshwater (e.g., precipitation) and soil KCl extract. This method is based on the isotopic analysis of nitrous oxide (N2O). Ammonium is initially oxidized to nitrite (NO2(-)) by hypobromite (BrO(-)) using previously established procedures. NO2(-) is then quantitatively converted into N2O by hydroxylamine (NH2OH) under strongly acid conditions. The produced N2O is analyzed by a commercially available purge and cryogenic trap system coupled to an isotope ratio mass spectrometer (PT-IRMS). On the basis of a typical analysis size of 4 mL, the standard deviation of δ(15)N measurements is less than 0.3‰ and often better than 0.1‰ (3 to 5 replicates). Compared to previous methods, the technique here has several advantages and the potential to be used as a routine method for (15)N/(14)N analysis of NH4(+): (1) substantially simplified preparation procedures and reduced preparation time particularly compared to the methods in which diffusion or distillation is involved since all reactions occur in the same vial and separation of NH4(+) from solution is not required; (2) more suitability for low volume samples including those with low N concentration, having a blank size of 0.6 to 2 nmol; (3) elimination of the use of extremely toxic reagents (e.g., HN3) and/or the use of specialized denitrifying bacterial cultures which may be impractical for many laboratories.


Science of The Total Environment | 2013

Spatial and temporal characteristics of particulate matter in Beijing, China using the Empirical Mode Decomposition method

Maogui Hu; Lin Jia; Jinfeng Wang; Yuepeng Pan

Air pollution has become a serious problem in Beijing, China. Daily PM10 mass concentration measurements were collected at 27 stations in Beijing over a 5-year period from January 1, 2008 to October 31, 2012. We used a new clustering method (kernel K-means) and a new period and trend decomposition method (Empirical Mode Decomposition, EMD) to explore the spatial and temporal characteristics of the PM10 mass concentration in the City. The temporal period and trend of each cluster center were decomposed using the EMD method, which is an adaptive data analysis method that requires no prior information. The daily PM10 mass concentrations varied greatly from 5 μg/m(3) to more than 600 μg/m(3). All of the stations were partitioned into three clusters by the kernel K-means method, and which represent the low-, middle- and high-pollution stations, respectively. The first cluster contained nine stations, mainly located in the north suburban area. The second cluster, whose degree of pollution was much more serious than the first cluster, contained 13 stations distributed in urban and peri-urban areas. The pollution level in the southern part of Beijing was much more serious than in the northern part of the City. The third cluster contained five stations located outside the second-cluster stations. The total decreased amplitudes of the three clusters during the whole period were 19 μg/m(3), 10 μg/m(3) and 4 μg/m(3), respectively. Although the global trend of the PM10 mass concentration decreased in general, it was not the same for each season and station. The trends in summer and winter declined, while in spring, it has been increasing in recent years. Five types of trends can be found for stations, including monotonic decreasing, rise fall, fall rise fall, fall rise and rise. The rising trend of the regional background air pollution monitoring station, Miyun-reservoir, indicates an increase in the Citys background PM10 mass concentration.


Journal of The Air & Waste Management Association | 2012

Acid neutralization of precipitation in Northern China.

Yuesi Wang; Wenpeng Yu; Yuepeng Pan; Dan Wu

There is an increasing concern over the impact of human-related emissions on the acid precipitation in China. However, few measurements have been conducted so far to clarify the acid-neutralization of precipitation on a regional scale. Under a network of 10 sites across Northern China operated during a 3-year period from December 2007 to November 2010, a total of 1118 rain and snow samples were collected. Of this total, 28% was acid precipitation with pH <5.6. Out of these acid samples, 53% were found heavily acidic with pH value below 5.0, indicating significantly high levels of acidification of precipitation. Most of the acidity of precipitation was caused by H2SO4 and HNO3, their relative contribution being 72% and 28%, respectively. However, the contribution of HNO3 to precipitation acidity will be enhanced due to the increasing NOx and stable SO2 emissions in future. Neutralization factors for K+, NH4 +, Ca2+, Na+, and Mg2+ were estimated as 0.06, 0.71, 0.72, 0.15, and 0.13, respectively. The application of multiple regression analysis further quantified higher NH4 + and Ca2+ contribution to the neutralization process, but the dominant neutralizing agent varied from site to site. The neutralization was less pronounced in the rural than urban areas, probably due to different levels of alkaline species, which strongly buffered the acidity. Presence of high concentrations of basic ions was mainly responsible for high pH of precipitation with annual volume-weighted mean (VWM) values larger than 5.6 at several sites. It was estimated that in the absence of buffering ions, for the given concentration of SO4 2− and NO3 −, the annual VWM pH of precipitation would have been recorded around 3.5 across Northern China. This feature suggested that emissions of particles and gaseous NH3 played very important role in controlling the spatial variations of pH of precipitation in the target areas. Implications Acid precipitation has long been recognized as a serious environmental problem in East Asia, especially in China. The present study identifies that acidity of precipitation in Northern China generated by H2SO4 and HNO3 was primarily neutralized by Ca2+ and NH4 +. However, in the future, acidity due to HNO3 may increase as a result of the increasing trends of NO x and stable trends of SO2 emissions in megacities. The reducing primary emissions of particles and gaseous ammonia may offer more clear-sky days in urban areas, but might also lead to enhanced acid precipitation in Northern China in the near future.


Advances in Atmospheric Sciences | 2012

Reductions of PM2.5 in Beijing-Tianjin-Hebei Urban Agglomerations during the 2008 Olympic Games

Jinyuan Xin; Yuesi Wang; Lili Wang; Guiqian Tang; Yang Sun; Yuepeng Pan; Dongsheng Ji

The Atmospheric Environmental Monitoring Network successfully undertook the task of monitoring the atmospheric quality of Beijing and its surrounding area during the 2008 Olympics. The results of this monitoring show that high concentrations of PM2.5 pollution exhibited a regional pattern during the monitoring period (1 June–30 October 2008). The PM2.5 mass concentrations were 53 μg m−3, 66 μg m−3, and 82 μg m−3 at the background site, in Beijing, and in the Beijing-Tianjin-Hebei urban agglomerations, respectively. The PM2.5 levels were lowest during the 2008 Olympic Games (8-24 August): 35 μg m−3 at the background site, 42 μg m−3 in Beijing and 57 μg m−3 in the region. These levels represent decreases of 49%, 48%, and 56%, respectively, compared to the prophase mean concentration before the Olympic Games. Emission control measures contributed 62%–82% of the declines observed in Beijing, and meteorological conditions represented 18%–38%. The concentration of fine particles met the goals set for a “Green Olympics.”

Collaboration


Dive into the Yuepeng Pan's collaboration.

Top Co-Authors

Avatar

Yuesi Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shili Tian

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuejun Liu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guiqian Tang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lili Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wen Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongsheng Ji

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jinyuan Xin

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge