Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuesheng Wu is active.

Publication


Featured researches published by Yuesheng Wu.


Circulation | 2007

Loss-of-Function Mutations in the Cardiac Calcium Channel Underlie a New Clinical Entity Characterized by ST-Segment Elevation, Short QT Intervals, and Sudden Cardiac Death

Charles Antzelevitch; Guido D. Pollevick; Jonathan M. Cordeiro; Oscar Casis; Michael C. Sanguinetti; Yoshiyasu Aizawa; Alejandra Guerchicoff; Ryan Pfeiffer; Antonio Oliva; Bernd Wollnik; Philip Gelber; Elias P. Bonaros; Elena Burashnikov; Yuesheng Wu; John Sargent; Stefan Schickel; Ralf Oberheiden; Atul Bhatia; Li Fern Hsu; Michel Haïssaguerre; Rainer Schimpf; Martin Borggrefe; Christian Wolpert

Background— Cardiac ion channelopathies are responsible for an ever-increasing number and diversity of familial cardiac arrhythmia syndromes. We describe a new clinical entity that consists of an ST-segment elevation in the right precordial ECG leads, a shorter-than-normal QT interval, and a history of sudden cardiac death. Methods and Results— Eighty-two consecutive probands with Brugada syndrome were screened for ion channel gene mutations with direct sequencing. Site-directed mutagenesis was performed, and CHO-K1 cells were cotransfected with cDNAs encoding wild-type or mutant CACNB2b (Cav&bgr;2b), CACNA2D1 (Cav&agr;2&dgr;1), and CACNA1C tagged with enhanced yellow fluorescent protein (Cav1.2). Whole-cell patch-clamp studies were performed after 48 to 72 hours. Three probands displaying ST-segment elevation and corrected QT intervals ≤360 ms had mutations in genes encoding the cardiac L-type calcium channel. Corrected QT ranged from 330 to 370 ms among probands and clinically affected family members. Rate adaptation of QT interval was reduced. Quinidine normalized the QT interval and prevented stimulation-induced ventricular tachycardia. Genetic and heterologous expression studies revealed loss-of-function missense mutations in CACNA1C (A39V and G490R) and CACNB2 (S481L) encoding the &agr;1- and &bgr;2b-subunits of the L-type calcium channel. Confocal microscopy revealed a defect in trafficking of A39V Cav1.2 channels but normal trafficking of channels containing G490R Cav1.2 or S481L Cav&bgr;2b-subunits. Conclusions— This is the first report of loss-of-function mutations in genes encoding the cardiac L-type calcium channel to be associated with a familial sudden cardiac death syndrome in which a Brugada syndrome phenotype is combined with shorter-than-normal QT intervals.


Circulation-arrhythmia and Electrophysiology | 2008

Functional Effects of KCNE3 Mutation and Its Role in the Development of Brugada Syndrome

Eva Delpón; Jonathan M. Cordeiro; Lucía Núñez; Poul Erik Bloch Thomsen; Alejandra Guerchicoff; Guido D. Pollevick; Yuesheng Wu; Carsten Toftager Larsen; Elena Burashnikov; Michael Christiansen; Charles Antzelevitch

Background— The Brugada syndrome, an inherited syndrome associated with a high incidence of sudden cardiac arrest, has been linked to mutations in 4 different genes, leading to a loss of function in sodium and calcium channel activity. Although the transient outward current (Ito) is thought to play a prominent role in the expression of the syndrome, mutations in Ito-related genes have not been identified as yet. Methods and Results— One hundred five probands with the Brugada syndrome were screened for ion channel gene mutations using single-strand conformation polymorphism electrophoresis and direct sequencing. A missense mutation (R99H) in KCNE3 (MiRP2) was detected in 1 proband. The R99H mutation was found 4/4 phenotype-positive and 0/3 phenotype-negative family members. Chinese hamster ovary-K1 cells were cotransfected using wild-type (WT) or mutant KCNE3 and either WT KCND3 or KCNQ1. Whole-cell patch clamp studies were performed after 48 hours. Interactions between Kv4.3 and KCNE3 were analyzed in coimmunoprecipitation experiments in human atrial samples. Cotransfection of R99H-KCNE3 with KCNQ1 produced no alteration in tail current magnitude or kinetics. However, cotransfection of R99H KCNE3 with KCND3 resulted in a significant increase in the Ito intensity compared with WT KCNE3+KCND3. Using tissues isolated from the left atrial appendages of human hearts, we also demonstrate that Kv4.3 and KCNE3 can be coimmunoprecipitated. Conclusions— These results provide definitive evidence for a functional role of KCNE3 in the modulation of Ito in the human heart and suggest that mutations in KCNE3 can underlie the development of the Brugada syndrome.


Circulation-cardiovascular Genetics | 2009

A Mutation in the β3 Subunit of the Cardiac Sodium Channel Associated with Brugada ECG Phenotype

Dan Hu; Hector Barajas-Martinez; Elena Burashnikov; Michael Springer; Yuesheng Wu; András Varró; Ryan Pfeiffer; Tamara T. Koopmann; Jonathan M. Cordeiro; Alejandra Guerchicoff; Guido D. Pollevick; Charles Antzelevitch

Background—Brugada syndrome, characterized by ST-segment elevation in the right precordial ECG leads and the development of life-threatening ventricular arrhythmias, has been associated with mutations in 6 different genes. We identify and characterize a mutation in a new gene. Methods and Results—A 64-year-old white male displayed a type 1 ST-segment elevation in V1 and V2 during procainamide challenge. Polymerase chain reaction–based direct sequencing was performed using a candidate gene approach. A missense mutation (L10P) was detected in exon 1 of SCN3B, the β3 subunit of the cardiac sodium channel, but not in any other gene known to be associated with Brugada syndrome or in 296 controls. Wild-type (WT) and mutant genes were expressed in TSA201 cells and studied using whole-cell patch-clamp techniques. Coexpression of SCN5A/WT+SCN1B/WT+SCN3B/L10P resulted in an 82.6% decrease in peak sodium current density, accelerated inactivation, slowed reactivation, and a −9.6-mV shift of half-inactivation voltage compared with SCN5A/WT+SCN1B/WT+SCN3B/WT. Confocal microscopy revealed that SCN5A/WT channels tagged with green fluorescent protein are localized to the cell surface when coexpressed with WT SCN1B and SCN3B but remain trapped in intracellular organelles when coexpressed with SCN1B/WT and SCN3B/L10P. Western blot analysis confirmed the presence of NaVβ3 in human ventricular myocardium. Conclusions—Our results provide support for the hypothesis that mutations in SCN3B can lead to loss of transport and functional expression of the hNav1.5 protein, leading to reduction in sodium channel current and clinical manifestation of a Brugada phenotype.


Heart Rhythm | 2012

Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8.

Hector Barajas-Martinez; Dan Hu; Tania Ferrer; Carlos G. Onetti; Yuesheng Wu; Elena Burashnikov; Madalene Boyle; Tyler Surman; Janire Urrutia; Christian Veltmann; Rainer Schimpf; Martin Borggrefe; Christian Wolpert; Bassiema Ibrahim; José A. Sánchez-Chapula; Stephen L. Winters; Michel Haïssaguerre; Charles Antzelevitch

BACKGROUND Adenosine triphosphate (ATP)-sensitive potassium cardiac channels consist of inward-rectifying channel subunits Kir6.1 or Kir6.2 (encoded by KCNJ8 or KCNJ11) and the sulfonylurea receptor subunits SUR2A (encoded by ABCC9). OBJECTIVE To examine the association of mutations in KCNJ8 with Brugada syndrome (BrS) and early repolarization syndrome (ERS) and to elucidate the mechanism underlying the gain of function of ATP-sensitive potassium channel current. METHODS Direct sequencing of KCNJ8 and other candidate genes was performed on 204 BrS and ERS probands and family members. Whole-cell and inside-out patch-clamp methods were used to study mutated channels expressed in TSA201 cells. RESULTS The same missense mutation, p.Ser422Leu (c.1265C>T) in KCNJ8, was identified in 3 BrS and 1 ERS probands but was absent in 430 alleles from ethnically matched healthy controls. Additional genetic variants included CACNB2b-D601E. Whole-cell patch-clamp studies showed a 2-fold gain of function of glibenclamide-sensitive ATP-sensitive potassium channel current when KCNJ8-S422L was coexpressed with SUR2A-wild type. Inside-out patch-clamp evaluation yielded a significantly greater half maximal inhibitory concentration for ATP in the mutant channels (785.5 ± 2 vs 38.4 ± 3 μM; n = 5; P <.01), pointing to incomplete closing of the ATP-sensitive potassium channels under normoxic conditions. Patients with a CACNB2b-D601E polymorphism displayed longer QT/corrected QT intervals, likely owing to their effect to induce an increase in L-type calcium channel current (I(Ca-L)). CONCLUSIONS Our results support the hypothesis that KCNJ8 is a susceptibility gene for BrS and ERS and point to S422L as a possible hotspot mutation. Our findings suggest that the S422L-induced gain of function in ATP-sensitive potassium channel current is due to reduced sensitivity to intracellular ATP.


Heart Rhythm | 2008

Gain of function in IKs secondary to a mutation in KCNE5 associated with atrial fibrillation.

Lasse Steen Ravn; Yoshiyasu Aizawa; Guido D. Pollevick; Jacob Hofman-Bang; Jonathan M. Cordeiro; Ulrik Dixen; Gorm Jensen; Yuesheng Wu; Elena Burashnikov; Stig Haunsø; Alejandra Guerchicoff; Dan Hu; Jesper Hastrup Svendsen; Michael Christiansen; Charles Antzelevitch

BACKGROUND Atrial fibrillation (AF) is the most common clinical arrhythmia and a major cause of cardiovascular morbidity and mortality. Among the gene defects previously associated with AF is a gain of function of the slowly activating delayed rectifier potassium current IKs, secondary to mutations in KCNQ1. Coexpression of KCNE5, the gene encoding the MiRP4 beta-subunit, has been shown to reduce IKs. OBJECTIVE The purpose of this study was to test the hypothesis that mutations in KCNE5 are associated with AF in a large cohort of patients with AF. METHODS One-hundred fifty-eight patients with AF were screened for mutations in the coding region of KCNE5. RESULTS A missense mutation involving substitution of a phenylalanine for leucine at position 65 (L65F) was identified in one patient. This patient did not have a history of familial AF, and neither KCNQ1 nor KCNE2 mutations were found. Transient transfection of Chinese hamster ovary (CHO) cells expressing IKs(KCNQ1+KCNE1) with KCNE5 suppressed the developing and tail currents of IKs in a concentration-dependent manner. Transient transfection with KCNE5-L65F failed to suppress IKs, yielding a current indistinguishable from that recorded in the absence of KCNE5. Developing currents recorded during a test pulse to +60 mV and tail currents recorded upon repolarization to -40 mV both showed a significant concentration-dependent gain of function in IKs with expression of KCNE5-L65F vs KCNE5-WT. CONCLUSION The results of this study suggest that a missense mutation in KCNE5 may be associated with nonfamilial or acquired forms of AF. The arrhythmogenic mechanism most likely is a gain of function of IKs.


PLOS ONE | 2012

Maximum Diastolic Potential of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Depends Critically on IKr

Michael Xavier Doss; José M. Di Diego; Robert J. Goodrow; Yuesheng Wu; Jonathan M. Cordeiro; Vladislav V. Nesterenko; Hector Barajas-Martinez; Dan Hu; Janire Urrutia; Mayurika Desai; Jacqueline A. Treat; Agapios Sachinidis; Charles Antzelevitch

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) hold promise for therapeutic applications. To serve these functions, the hiPSC-CM must recapitulate the electrophysiologic properties of native adult cardiomyocytes. This study examines the electrophysiologic characteristics of hiPSC-CM between 11 and 121 days of maturity. Embryoid bodies (EBs) were generated from hiPS cell line reprogrammed with Oct4, Nanog, Lin28 and Sox2. Sharp microelectrodes were used to record action potentials (AP) from spontaneously beating clusters (BC) micro-dissected from the EBs (n = 103; 37°C) and to examine the response to 5 µM E-4031 (n = 21) or BaCl2 (n = 22). Patch-clamp techniques were used to record IKr and IK1 from cells enzymatically dissociated from BC (n = 49; 36°C). Spontaneous cycle length (CL) and AP characteristics varied widely among the 103 preparations. E-4031 (5 µM; n = 21) increased Bazett-corrected AP duration from 291.8±81.2 to 426.4±120.2 msec (p<0.001) and generated early afterdepolarizations in 8/21 preparations. In 13/21 BC, E-4031 rapidly depolarized the clusters leading to inexcitability. BaCl2, at concentrations that selectively block IK1 (50–100 µM), failed to depolarize the majority of clusters (13/22). Patch-clamp experiments revealed very low or negligible IK1 in 53% (20/38) of the cells studied, but presence of IKr in all (11/11). Consistent with the electrophysiological data, RT-PCR and immunohistochemistry studies showed relatively poor mRNA and protein expression of IK1 in the majority of cells, but robust expression of IKr. In contrast to recently reported studies, our data point to major deficiencies of hiPSC-CM, with remarkable diversity of electrophysiologic phenotypes as well as pharmacologic responsiveness among beating clusters and cells up to 121 days post-differentiation (dpd). The vast majority have a maximum diastolic potential that depends critically on IKr due to the absence of IK1. Thus, efforts should be directed at producing more specialized and mature hiPSC-CM for future therapeutic applications.


International Journal of Cardiology | 2014

ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene.

Dan Hu; Hector Barajas-Martinez; Andre Terzic; Sungjo Park; Ryan Pfeiffer; Elena Burashnikov; Yuesheng Wu; Martin Borggrefe; Christian Veltmann; Rainer Schimpf; John J. Cai; Gi Byong Nam; Pramod Deshmukh; Melvin M. Scheinman; Mark Preminger; Jonathan S. Steinberg; Daniela Ponce-Balbuena; Christian Wolpert; Michel Haïssaguerre; José A. Sánchez-Chapula; Charles Antzelevitch

BACKGROUND Genetic defects in KCNJ8, encoding the Kir6.1 subunit of the ATP-sensitive K(+) channel (I(K-ATP)), have previously been associated with early repolarization (ERS) and Brugada (BrS) syndromes. Here we test the hypothesis that genetic variants in ABCC9, encoding the ATP-binding cassette transporter of IK-ATP (SUR2A), are also associated with both BrS and ERS. METHODS AND RESULTS Direct sequencing of all ERS/BrS susceptibility genes was performed on 150 probands and family members. Whole-cell and inside-out patch-clamp methods were used to characterize mutant channels expressed in TSA201-cells. Eight ABCC9 mutations were uncovered in 11 male BrS probands. Four probands, diagnosed with ERS, carried a highly-conserved mutation, V734I-ABCC9. Functional expression of the V734I variant yielded a Mg-ATP IC₅₀ that was 5-fold that of wild-type (WT). An 18-y/o male with global ERS inherited an SCN5A-E1784K mutation from his mother, who displayed long QT intervals, and S1402C-ABCC9 mutation from his father, who displayed an ER pattern. ABCC9-S1402C likewise caused a gain of function of IK-ATP with a shift of ATP IC₅₀ from 8.5 ± 2 mM to 13.4 ± 5 μM (p<0.05). The SCN5A mutation reduced peak INa to 39% of WT (p<0.01), shifted steady-state inactivation by -18.0 mV (p<0.01) and increased late I(Na) from 0.14% to 2.01% of peak I(Na) (p<0.01). CONCLUSION Our study is the first to identify ABCC9 as a susceptibility gene for ERS and BrS. Our findings also suggest that a gain-of-function in I(K-ATP) when coupled with a loss-of-function in SCN5A may underlie type 3 ERS, which is associated with a severe arrhythmic phenotype.


Cardiovascular Research | 2003

Coordinated down-regulation of KCNQ1 and KCNE1 expression contributes to reduction of IKs in canine hypertrophied hearts

C Ramakers; Marc A. Vos; P.A Doevendans; M Schoenmakers; Yuesheng Wu; S Scicchitano; A Iodice; George P. Thomas; Charles Antzelevitch; Robert Dumaine

OBJECTIVE In animal models of hypertrophy, electrical remodeling giving rise to QT prolongation occurs rapidly and is associated with the development of torsade de pointes (TdP) arrhythmias and sudden death. Chronic AV block (CAVB)-induced hypertrophy in dogs has been associated with a reduction in the slow component (I(Ks)) of the delayed rectifier potassium current (I(K)), which contributes to a prolongation of ventricular repolarization, the development of an acquired form of long QT, and the substrate for triggered activity and TdP. The present study was designed to probe the molecular basis for the decrease in I(Ks) by studying the characteristics of KCNE1 and KCNQ1, the putative genes responsible for formation of the channel. METHODS AND RESULTS Using a combination of Northern blot, competitive multiplex PCR and immunoblot assays, we found that CAVB reduces KCNE1 and KCNQ1 RNA in the canine ventricles by 70 and 80%, respectively. Protein levels of KCNE1 and KCNQ1 were reduced by 60 and 50%, respectively. We also demonstrate at the molecular level the basis for inter-ventricular difference in I(Ks) density previously reported in hearts of normal dogs and show the basis for reduction of this difference in the CAVB dog. CONCLUSIONS Our results indicate that the CAVB-induced reduction in I(Ks) is due to a down-regulation of KCNE1 and KCNQ1 transcription. The data suggest that electrical remodeling of the cardiac ventricle during hypertrophy involves regulation of the gene expression through modulation of transcriptional and translational regulatory pathways. The reduction in KCNE1 and KCNQ1 expression increases the dependence of ventricular repolarization on the rapid component of I(K) and may potentiate the action of Class III antiarrhythmic agents.


Circulation Research | 2008

Lidocaine-Induced Brugada Syndrome Phenotype Linked to a Novel Double Mutation in the Cardiac Sodium Channel

Hector Barajas-Martinez; Dan Hu; Jonathan M. Cordeiro; Yuesheng Wu; Richard J. Kovacs; Henry Meltser; Hong Kui; Burashnikov Elena; Ramon Brugada; Charles Antzelevitch; Robert Dumaine

Brugada syndrome has been linked to mutations in SCN5A. Agents that dissociate slowly from the sodium channel such as flecainide and ajmaline unmask the Brugada syndrome electrocardiogram and precipitate ventricular tachycardia/fibrillation. Lidocaine, an agent with rapid dissociation kinetics, has previously been shown to exert no effect in patients with Brugada syndrome. We characterized a novel double mutation of SCN5A (V232I in DI-S4+L1308F in DIII-S4) identified in a rare case of lidocaine (1 mg/kg)-induced Brugada syndrome. We studied lidocaine blockade of INa generated by wild-type and V232I+L1308F mutant cardiac sodium channels expressed in mammalian TSA201 cells using patch clamp techniques. Despite no significant difference in steady-state gating parameters between V232I+L1308F and wild-type sodium currents at baseline, use-dependent inhibition of INa by lidocaine was more pronounced in V232I+L1308F versus wild-type (73.0±0.1% versus 18.23±0.04% at 10 &mgr;mol/L measured at 10 Hz, respectively). A dose of 10 &mgr;mol/L lidocaine also caused a more negative shift of steady-state inactivation in V232I+L1308F versus wild-type (−14.1±0.3 mV and −4.8±0.3 mV, respectively). The individual mutations produced a much less accentuated effect. We report the first case of lidocaine-induced Brugada electrocardiogram phenotype. The double mutation in SCN5A, V232I, and L1308F alters the affinity of the cardiac sodium channel for lidocaine such that the drug assumes Class IC characteristics with potent use-dependent block of the sodium channel. Our results demonstrate an additive effect of the 2 missense mutations to sensitize the sodium channel to lidocaine. These findings suggest caution when treating patients carrying such genetic variations with Class I antiarrhythmic drugs.


Heart Rhythm | 2015

High prevalence of concealed Brugada syndrome in patients with atrioventricular nodal reentrant tachycardia

Can Hasdemir; Serdar Payzin; Umut Kocabaş; Hatice Sahin; Nihal Yildirim; Alpay Alp; Mehmet Aydin; Ryan Pfeiffer; Elena Burashnikov; Yuesheng Wu; Charles Antzelevitch

BACKGROUND Atrioventricular nodal reentrant tachycardia (AVNRT) may coexist with Brugada syndrome (BrS). OBJECTIVES The present study was designed to determine the prevalence of drug-induced type 1 Brugada ECG pattern (concealed BrS) in patients presenting with clinical spontaneous AVNRT and to investigate their electrocardiographic, electrophysiological, and genetic characteristics. METHODS Ninety-six consecutive patients without any sign of BrS on baseline electrocardiogram undergoing electrophysiological study and ablation for symptomatic, drug-resistant AVNRT and 66 control subjects underwent an ajmaline challenge to unmask BrS. Genetic screening was performed in 17 patients displaying both AVNRT and BrS. RESULTS A concealed BrS electrocardiogram was uncovered in 26 of 96 patients with AVNRT (27.1%) and in 3 of 66 control subjects (4.5%) (P ≤ .001). Patients with concealed BrS were predominantly female patients (n=23 [88.5%] vs n=44 [62.9%], P = .015), had higher prevalence of chest pain (n=10 [38.5%] vs n=13 [18.6%], p=0.042), migraine headaches (n=10 [38.5%] vs n=10 [14.2%], p=0.008), and drug-induced initiation and/or worsening of duration and/or frequency of AVNRT (n=4 [15.4%] vs n=1 [1.4%], p=0.006) as compared to patients with AVNRT without BrS. Genetic screening identified 19 mutations or rare variants in 13 genes in 13 of 17 patients with both AVNRT and BrS (yield = 76.5%). Ten of these 13 genotype-positive patients (76.9%) harbored genetic variants known or suspected to cause a loss of function of cardiac sodium channel current (SCN5A, SCN10A, SCN1B, GPD1L, PKP2, and HEY2). CONCLUSION Our results suggest that spontaneous AVNRT and concealed BrS co-occur, particularly in female patients, and that genetic variants that reduce sodium channel current may provide a mechanistic link between AVNRT and BrS and predispose to expression of both phenotypes.

Collaboration


Dive into the Yuesheng Wu's collaboration.

Top Co-Authors

Avatar

Charles Antzelevitch

Lankenau Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan Pfeiffer

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Alejandra Guerchicoff

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Janire Urrutia

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge