Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yufen Xie is active.

Publication


Featured researches published by Yufen Xie.


Journal of Biological Chemistry | 2011

The Phosphoinositide Kinase PIKfyve Is Vital in Early Embryonic Development PREIMPLANTATION LETHALITY OF PIKfyve−/− EMBRYOS BUT NORMALITY OF PIKfyve+/− MICE

Ognian C. Ikonomov; Diego Sbrissa; Khortnal Delvecchio; Yufen Xie; Jian Ping Jin; Daniel Rappolee; Assia Shisheva

Gene mutations in the phosphoinositide-metabolizing enzymes are linked to various human diseases. In mammals, PIKfyve synthesizes PtdIns(3,5)P2 and PtdIns5P lipids that regulate endosomal trafficking and responses to extracellular stimuli. The consequence of pikfyve gene ablation in mammals is unknown. To clarify the importance of PIKfyve and PIKfyve lipid products, in this study, we have characterized the first mouse model with global deletion of the pikfyve gene using the Cre-loxP approach. We report that nearly all PIKfyveKO/KO mutant embryos died before the 32–64-cell stage. Cultured fibroblasts derived from PIKfyveflox/flox embryos and rendered pikfyve-null by Cre recombinase expression displayed severely reduced DNA synthesis, consistent with impaired cell division causing early embryo lethality. The heterozygous PIKfyveWT/KO mice were born at the expected Mendelian ratio and developed into adulthood. PIKfyveWT/KO mice were ostensibly normal by several other in vivo, ex vivo, and in vitro criteria despite the fact that their levels of the PIKfyve protein and in vitro enzymatic activity in cells and tissues were 50–55% lower than those of wild-type mice. Consistently, steady-state levels of the PIKfyve products PtdIns(3,5)P2 and PtdIns5P selectively decreased, but this reduction (35–40%) was 10–15% less than that expected based on PIKfyve protein reduction. The nonlinear decrease of the PIKfyve protein versus PIKfyve lipid products, the potential mechanism(s) discussed herein, may explain how one functional allele in PIKfyveWT/KO mice is able to support the demands for PtdIns(3,5)P2/PtdIns5P synthesis during life. Our data also shed light on the known human disorder linked to PIKFYVE mutations.


Reproduction | 2010

Cellular stress causes reversible, PRKAA1/2-, and proteasome-dependent ID2 protein loss in trophoblast stem cells

W. Zhong; Yufen Xie; M.E. Abdallah; Awoniyi O. Awonuga; Jill A. Slater; Levent Sipahi; Elizabeth E. Puscheck; D.A. Rappolee

Stress reduces fertility, but the mechanisms mediating this are not understood. For a successful pregnancy, placental trophoblast stem cells (TSCs) in the implanting embryo proliferate and then a subpopulation differentiates to produce hormones. Normally, differentiation occurs when inhibitor of differentiation 2 (ID2) protein is lost in human and mouse placental stem cells. We hypothesize that stress enzyme-dependent differentiation occurs in association with insufficient TSC accumulation. We studied a well-defined model where TSC differentiation requires ID2 loss. The loss of ID2 derepresses the promoter of chorionic somatomammotropin hormone 1 (CSH1), the first hormone after implantation. Csh1 mRNA is known to be induced in stressed TSCs. In this study, we demonstrate that AMP-activated protein kinase (PRKAA1/2, aka AMPK) mediates the stress-induced proteasome-dependent loss of ID2 at high stress levels. At very low stress levels, PRKAA1/2 mediates metabolic adaptation exemplified by the inactivation of acetyl coA carboxylase by phosphorylation without ID2 loss. At the highest stress levels, irreversible TSC differentiation as defined by ID2 loss and slower cell accumulation occurs. However, lower stress levels lead to reversible differentiation accompanied by metabolic adaptation. These data support the hypothesis that PRKAA1/2 mediates preparation for differentiation that is induced by stress at levels where a significant decrease in cell accumulation occurs. This supports the interpretation that enzyme-mediated increases in differentiation may compensate when insufficient numbers of stem cells accumulate.


Placenta | 2011

Oxygen levels that optimize TSC culture are identified by maximizing growth rates and minimizing stress

Sichang Zhou; Yufen Xie; Elizabeth E. Puscheck; D.A. Rappolee

Accumulating data suggest that 20% O(2) causes human and mouse placental trophoblast stem cell (TSC) differentiation and suppresses proliferation. We tested the hypotheses that phosphorylated stress-activated protein kinase (pSAPK) levels report the optimal O(2) level for TSC culture, and that pSAPK responds to contradictory signals. We tested the dose range of 0-20% O(2) (0, 0.5, 2, and 20%) on five effects in cultured TSC. The results showed 1) TSC accumulation rates were highest at 2% O(2), lower at 20% and lowest at 0-0.5%; 2) pSAPK protein levels were lowest at 2% O(2), higher at 20%, and highest at 0-0.5%; 3) Cleaved caspase 3, an apoptosis marker, increased at 0.5% O(2), and was highest at 0% O(2); 4) Three markers for multipotency were highest at 2 and 20% and significantly decreased at 0.5%-0%; 5) In contrast three differentiation markers were lowest at 2% and highest at 0.5%-0%. Thus, 2% O(2) is the optimum as defined by lowest pSAPK and differentiation markers and highest growth rate and multipotency markers, without appreciable apoptosis. In addition, two lines of evidence suggest that fibroblast growth factor (FGF)4 does not directly activate SAPK. SAPK activity increases transiently with FGF4 removal at 2% O(2), but SAPK activity decreases when O(2) is switched from 20% to 2% with FGF4 present. Thus, SAPK is activated by contradictory signals, but activity decreases when either signal is removed. Taken together, the findings suggest that pSAPK senses suboptimal signals during TSC culture and probably in vivo.


Reproductive Sciences | 2007

Use of Hyperosmolar Stress to Measure Stress-Activated Protein Kinase Activation and Function in Human HTR Cells and Mouse Trophoblast Stem Cells

W. Zhong; Yufen Xie; Yingchun Wang; Jennifer M. Lewis; Anna Trostinskaia; Fangfei Wang; Elizabeth E. Puscheck; Daniel A. Rappolee

Embryo growth is inversely correlated with hyperosmolar stress-induced stress-activated protein kinase/jun kinase (SAPK/JNK) induction. To examine whether stress has similar effects in stem cells derived from the embryo, the authors test trophoblast stem cells. The stress response of human placental and mouse trophoblast stem cell lines are tested here. Peak phosphorylated SAPK/JNK was induced by 400 mM sorbitol at 0.5 hours. At this dose, there is an SAPK/JNK-dependent decrease in mitogenic, phosphorylated cMyc at 0.5 hours preceding an SAPK/JNK-dependent decrease in cell cycle entrance at 24 hours. At 0.5 hours, SAPK/JNK decreases terminal deoxynucleotidyltransferase dUTP nick end labeling/apoptosis at sorbitol doses from 50 mM to 400 mM and induces phosphorylated cJun prior to an SAPK/JNK-dependent, approximate 8-fold increase in apoptosis by 24 hours at 400 mM. SAPK/JNK phosphorylation peaked at 0.5 to 4 hours and largely subsided by 12 hours. Thus, total SAPK/JNK exists before stress and mediates rapid, homeostatic molecular responses that become biologic consequences after phosphorylated SAPK/JNK ends. This suggests continuity in the homeostatic mechanisms and functions of SAPK/JNK in placental lineage cells during implantation, in which SAPK/JNK is completely responsible for cell cycle arrest and largely responsible for apoptosis.


Molecular Reproduction and Development | 2010

Benzo(a)pyrene causes PRKAA1/2‐dependent ID2 loss in trophoblast stem cells

Yufen Xie; M.E. Abdallah; Awoniyi O. Awonuga; Jill A. Slater; Elizabeth E. Puscheck; D.A. Rappolee

Benzo(a)pyrene (BaP), a cigarette smoke component, is metabolized to diol esters (BPDE) that bind to DNA and form mutagenic BPDE‐DNA adducts. BaP activates stress enzymes including stress‐activated protein kinase/jun kinase (MAPK8/9) in embryos, AMP‐activated protein kinase alpha1/2 subunits (PRKAA1/2) in somatic cells, and inhibits the proliferation of trophoblast cell lineages. The loss of transcription factor inhibitor of differentiation (ID)2 is required for the initial differentiation of mouse trophoblast stem cells (TSC) in implanting mouse embryo to produce the first placental hormone, chorionic sommatomammotropin (CSH)1. Here we demonstrate that BaP activates PRKAA1/2 and causes ID2 protein loss in TSC in a time‐ and dose‐dependent manner. Although PRKAA1/2 was activated at low BaP doses, PRKAA1/2‐dependent ID2 protein loss occurred at a dose that was similar to the threshold that results in a significant decrease in TSC accumulation and decreased fraction of proliferating TSC. This suggests a possible relationship between stress‐induced declines in cell accumulation and stem cell differentiation when BaP levels are high. The threshold BaP dose that induces significant ID2 loss is in the range of a 2–3 pack/day habit, suggesting that this mechanism may be involved with implantation failure in smoking women. Mol. Reprod. Dev. 77: 533–539, 2010.


Systems Biology in Reproductive Medicine | 2010

Benzopyrene and Experimental Stressors Cause Compensatory Differentiation in Placental Trophoblast Stem Cells

Daniel A. Rappolee; Awoniyi O. Awonuga; Elizabeth E. Puscheck; Sichang Zhou; Yufen Xie

Stress causes decreased cell accumulation in early periimplantation embryos and the placental trophoblast stem cells derived from them. Benzopyrene and many other stressors activate stress enzymes that lead to suppressed stem cell accumulation through diminished proliferation and increased apoptosis. Trophoblast stem cells proliferate and a subpopulation of early postimplantation trophoblast cells differentiate to produce the first placental hormones that arise in the implanting conceptus. These hormones mediate antiluteolytic effects that enable the continuation of a successful implantation. The normal determination and differentiation of placental trophoblast stem cells is dependent upon a series of transcription factors. But, these transcription factors can also be modulated by stress through the activity of stress enzymes. This review enumerates and analyzes recent reports on the effects of benzopyrene on placental function in terms of the emerging paradigm that placental differentiation from stem cells can be regulated when insufficient production of stem cells is caused by stress. In addition, we review the other effects caused by benzopyrene throughout placental development.


Stem Cells and Development | 2013

Stress Induces AMP-Dependent Loss of Potency Factors Id2 and Cdx2 in Early Embryos and Stem Cells

Yufen Xie; Awoniyi O. Awonuga; J. Liu; Edmond H. H. M. Rings; Elizabeth E. Puscheck; Daniel A. Rappolee

The AMP-activated protein kinase (AMPK) mediates rapid, stress-induced loss of the inhibitor of differentiation (Id)2 in blastocysts and trophoblast stem cells (TSC), and a lasting differentiation in TSC. However, it is not known if AMPK regulates other potency factors or regulates them before the blastocyst stage. The caudal-related homeodomain protein (Cdx)2 is a regulatory gene for determining TSC, the earliest placental lineage in the preimplantation mouse embryo, but is expressed in the oocyte and in early cleavage stage embryos before TSC arise. We assayed the expression of putative potency-maintaining phosphorylated Cdx2 ser60 in the oocyte, two-cell stage embryo, blastocyst, and in TSC. We studied the loss of Cdx2 phospho ser60 expression induced by hyperosmolar stress and its underlying mechanisms. Hyperosmolar stress caused rapid loss of nuclear Cdx2 phospho ser60 and Id2 in the two-cell stage embryo by 0.5 h. Stress-induced Cdx2 phospho ser60 and Id2 loss is reversed by the AMPK inhibitor compound C and is induced by the AMPK agonist 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide in the absence of stress. In the two-cell stage embryo and TSC hyperosmolar, stress caused AMPK-mediated loss of Cdx2 phospho ser60 as detected by immunofluorescence and immunoblot. We propose that AMPK may be the master regulatory enzyme for mediating stress-induced loss of potency as AMPK is also required for stress-induced loss of Id2 in blastocysts and TSC. Since AMPK mediates potency loss in embryos and stem cells it will be important to measure, test mechanisms for, and manage the AMPK function to optimize the stem cell and embryo quality in vitro and in vivo.


FEBS Letters | 2005

Acquisition of essential somatic cell cycle regulatory protein expression and implied activity occurs at the second to third cell division in mouse preimplantation embryos

Yufen Xie; Tong Sun; Q. Tian Wang; Yingchun Wang; Fangfei Wang; Elizabeth E. Puscheck; Daniel A. Rappolee

It is clear that G1–S phase control is exerted after the mouse embryo implants into the uterus 4.5 days after fertilization (E4.5); null mutants of genes that control cell cycle commitment such as max, rb (retinoblastoma), and dp1 are embryonic lethal after implantation with proliferation phenotypes. But, a number of studies of genes mediating proliferation control in the embryo after fertilization‐implantation have yielded confusing results. In order to understand when embryos might first exert G1–S phase regulatory control, we assayed preimplantation mouse embryos for the acquisition of expression of mRNA, protein, and phospho‐protein for max, Rb, and DP‐1, and for the proliferation‐promoting phospho‐protein forms of mycC (thr58/ser62) and Rb (ser795). The key findings are that: (1) DP‐1 protein was present in the nucleus as early as the four‐cell stage onwards, (2) max protein was in the nucleus, suggesting function from the four‐cell stage onwards, (3) both mycC and Rb all form protein was present at increasing quantities in the cytoplasm from the 2 cell and 4/8 cell stage, respectively, (4) the phosphorylated form of mycC phospho was present in the nucleus at high levels from the two‐cell stage through blastocyst‐stage, and (5) the phosphorylated form of Rb was detected at low levels in the two‐cell stage embryo and was highly expressed at the 4/8‐cell stage through the blastocyst stage. Taken together, these data suggest that activation of mycC phospho/max dimer pairs, (E2F)/DP‐1 dimer pairs, and repression of Rb inhibition of cell cycle progression via phosphorylation at ser795 occurs at the earliest stages of embryonic development. In addition, the presence of max, mycC phospho, DP‐1, and Rb phospho in the nuclei of embryonic and placental lineage cells in the blastocyst and in trophoblast stem cells suggests that a similar type of cell cycle regulation is present throughout preimplantation development and in both embryonic and extra‐embryonic cell lineages.


Stem Cell Research | 2014

Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency

Yufen Xie; Sichang Zhou; Zhongliang Jiang; Jing Dai; Elizabeth E. Puscheck; Icksoo Lee; Graham C. Parker; Maik Hüttemann; Daniel A. Rappolee

Dysfunctional stem cell differentiation into placental lineages is associated with gestational diseases. Of the differentiated lineages available to trophoblast stem cells (TSC), elevated O2 and mitochondrial function are necessary to placental lineages at the maternal-placental surface and important in the etiology of preeclampsia. TSC lineage imbalance leads to embryonic failure during uterine implantation. Stress at implantation exacerbates stem cell depletion by decreasing proliferation and increasing differentiation. In an implantation site O2 is normally ~2%. In culture, exposure to 2% O2 and fibroblast growth factor 4 (FGF4) enabled the highest mouse TSC multipotency and proliferation. In contrast, hypoxic stress (0.5% O2) initiated the most TSC differentiation after 24h despite exposure to FGF4. However, hypoxic stress supported differentiation poorly after 4-7 days, despite FGF4 removal. At all tested O2 levels, FGF4 maintained Warburg metabolism; mitochondrial inactivity and aerobic glycolysis. However, hypoxic stress suppressed mitochondrial membrane potential and maintained low mitochondrial cytochrome c oxidase (oxidative phosphorylation/OxPhos), and high pyruvate kinase M2 (glycolysis) despite FGF4 removal. Inhibiting OxPhos inhibited optimum differentiation at 20% O2. Moreover, adding differentiation-inducing hyperosmolar stress failed to induce differentiation during hypoxia. Thus, differentiation depended on OxPhos at 20% O2; hypoxic and hyperosmolar stresses did not induce differentiation at 0.5% O2. Hypoxia-limited differentiation and mitochondrial inhibition and activation suggest that differentiation into two lineages of the labyrinthine placenta requires O2>0.5-2% and mitochondrial function. Stress-activated protein kinase increases an early lineage and suppresses later lineages in proportion to the deviation from optimal O2 for multipotency, thus it is the first enzyme reported to prioritize differentiation.


Cancer Genetics and Cytogenetics | 2009

Adrenaline induces chemoresistance in HT-29 colon adenocarcinoma cells

Herui Yao; Zhaohui Duan; Minghui Wang; Awoniyi O. Awonuga; Daniel A. Rappolee; Yufen Xie

Psychological distress and its ensuing chronic elevation of plasma catecholamines (adrenaline and noradrenaline) lead to poor response of tumors to chemotherapy, and constitute a poor prognostic factor for survival. Colorectal cancer patients suffer from various forms of psychological stress reflected in elevated plasma catecholamines, and their cancer cells express adrenergic receptors. Our objective was to investigate whether adrenergic activation contributes to the chemoresistance of colon cancers, and to explore the signal transduction pathway involved in the activation. The mRNA expression of the ABCB1 gene (previously MDR1) in human colon carcinoma HT-29 cell line was measured after treatment with an adrenergic receptor agonist (adrenaline) and various antagonists (propranolol, prazosin, and yohimbine). The function of P-glycoprotein, the protein product of the ABCB1 gene, was assessed by rhodamine 123 (Rh123)-retention assay, and chemosensitivity was determined by evaluating the cytotoxicity of 5-fluorouracil (5-FU) on the tumor cells. Increased ABCB1 mRNA expression and P-glycoprotein function levels in HT-29 cells by adrenaline was dose-dependent. This was accompanied by promotion of Rh123 efflux, and resistance to the growth-inhibiting effect of 5-FU in the tumor cells. The alpha2-adrenergic receptor antagonist yohimbine completely abolished the induction of ABCB1 mRNA, the stimulatory effect of adrenaline on Rh123 efflux, and the growth-inhibiting effect of 5-FU. The alpha1-adrenergic receptor and beta-adrenergic receptor antagonists did not inhibit the induction of ABCB1. The stimulating effects were coupled with extracellular receptor kinase 1/2 (Erk1/2) phosphorylation, but were not associated with protein kinase A activity. We conclude that adrenaline induces multidrug resistance in colon cancer cells by upregulating ABCB1 gene expression via alpha2-adrenergic receptors, and such effects were associated with the mitogen activated protein kinase (MAPK) pathway.

Collaboration


Dive into the Yufen Xie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Zhong

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge