Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuh-Shuh Wang is active.

Publication


Featured researches published by Yuh-Shuh Wang.


Plant Journal | 2010

Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1.

Triin Vahisalu; Irina Puzõrjova; Mikael Brosché; Ervin Valk; Martin Lepiku; Heino Moldau; Priit Pechter; Yuh-Shuh Wang; Ove Lindgren; Jarkko Salojärvi; Mart Loog; Jaakko Kangasjärvi; Hannes Kollist

The air pollutant ozone can be used as a tool to unravel in planta processes induced by reactive oxygen species (ROS). Here, we have utilized ozone to study ROS-dependent stomatal signaling. We show that the ozone-triggered rapid transient decrease (RTD) in stomatal conductance coincided with a burst of ROS in guard cells. RTD was present in 11 different Arabidopsis ecotypes, suggesting that it is a genetically robust response. To study which signaling components or ion channels were involved in RTD, we tested 44 mutants deficient in various aspects of stomatal function. This revealed that the SLAC1 protein, essential for guard cell plasma membrane S-type anion channel function, and the protein kinase OST1 were required for the ROS-induced fast stomatal closure. We showed a physical interaction between OST1 and SLAC1, and provide evidence that SLAC1 is phosphorylated by OST1. Phosphoproteomic experiments indicated that OST1 phosphorylated multiple amino acids in the N terminus of SLAC1. Using TILLING we identified three new slac1 alleles where predicted phosphosites were mutated. The lack of RTD in two of them, slac1-7 (S120F) and slac1-8 (S146F), suggested that these serine residues were important for the activation of SLAC1. Mass-spectrometry analysis combined with site-directed mutagenesis and phosphorylation assays, however, showed that only S120 was a specific phosphorylation site for OST1. The absence of the RTD in the dominant-negative mutants abi1-1 and abi2-1 also suggested a regulatory role for the protein phosphatases ABI1 and ABI2 in the ROS-induced activation of the S-type anion channel.


Plant Physiology | 2005

The Potato Virus X TGBp2 Movement Protein Associates with Endoplasmic Reticulum-Derived Vesicles during Virus Infection

Ho-Jong Ju; Timmy D. Samuels; Yuh-Shuh Wang; Elison B. Blancaflor; Mark E. Payton; Ruchira Mitra; Konduru Krishnamurthy; Richard S. Nelson; Jeanmarie Verchot-Lubicz

The green fluorescent protein (GFP) gene was fused to the potato virus X (PVX) TGBp2 gene, inserted into either the PVX infectious clone or pRTL2 plasmids, and used to study protein subcellular targeting. In protoplasts and plants inoculated with PVX-GFP:TGBp2 or transfected with pRTL2-GFP:TGBp2, fluorescence was mainly in vesicles and the endoplasmic reticulum (ER). During late stages of virus infection, fluorescence became increasingly cytosolic and nuclear. Protoplasts transfected with PVX-GFP:TGBp2 or pRTL2-GFP:TGBp2 were treated with cycloheximide and the decline of GFP fluorescence was greater in virus-infected protoplasts than in pRTL2-GFP:TGBp2-transfected protoplasts. Thus, protein instability is enhanced in virus-infected protoplasts, which may account for the cytosolic and nuclear fluorescence during late stages of infection. Immunogold labeling and electron microscopy were used to further characterize the GFP:TGBp2-induced vesicles. Label was associated with the ER and vesicles, but not the Golgi apparatus. The TGBp2-induced vesicles appeared to be ER derived. For comparison, plasmids expressing GFP fused to TGBp3 were transfected to protoplasts, bombarded to tobacco leaves, and studied in transgenic leaves. The GFP:TGBp3 proteins were associated mainly with the ER and did not cause obvious changes in the endomembrane architecture, suggesting that the vesicles reported in GFP:TGBp2 studies were induced by the PVX TGBp2 protein. In double-labeling studies using confocal microscopy, fluorescence was associated with actin filaments, but not with Golgi vesicles. We propose a model in which reorganization of the ER and increased protein degradation is linked to plasmodesmata gating.


Protoplasma | 2005

Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth

Christy M. Motes; Priit Pechter; Cheol Min Yoo; Yuh-Shuh Wang; Kent D. Chapman; Elison B. Blancaflor

Summary.Plant development is regulated by numerous chemicals derived from a multitude of metabolic pathways. However, we know very little about the biological effects and functions of many of these metabolites in the cell. N-Acylethanolamines (NAEs) are a group of lipid mediators that play important roles in mammalian physiology. Despite the intriguing similarities between animals and plants in NAE metabolism and perception, not much is known about the precise function of these metabolites in plant physiology. In plants, NAEs have been shown to inhibit phospholipase Dα (PLDα) activity, interfere with abscisic acid-induced stomatal closure, and retard Arabidopsis seedling development. 1-Butanol, an antagonist of PLD-dependent phosphatidic acid production, was reported to induce defects in Arabidopsis seedling development that were somewhat similar to effects induced by elevated levels of NAE. This raised the possibility that the impact of NAE on seedling growth could be mediated in part via its influence on PLD activity. To begin to address this possibility, we conducted a detailed, comparative analysis of the effects of 1-butanol and N-lauroylethanolamine (NAE 12:0) on Arabidopsis root cell division, in vivo cytoskeletal organization, seed germination, and seedling growth. Although both NAE 12:0 and 1-butanol induced profound cytoskeletal and morphological alterations in seedlings, there were distinct differences in their overall effects. 1-Butanol induced more pronounced modifications in cytoskeletal organization, seedling growth, and cell division at concentrations severalfold higher than NAE 12:0. We propose that these compounds mediate their differential effects on cellular organization and seedling growth, in part through the differential modulation of specific PLD isoforms.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Manipulation of Arabidopsis fatty acid amide hydrolase expression modifies plant growth and sensitivity to N-acylethanolamines.

Yuh-Shuh Wang; Rhidaya Shrestha; Aruna Kilaru; William Wiant; Barney J. Venables; Kent D. Chapman; Elison B. Blancaflor

In vertebrates, the endocannabinoid signaling pathway is an important lipid regulatory pathway that modulates a variety of physiological and behavioral processes. N-Acylethanolamines (NAEs) comprise a group of fatty acid derivatives that function within this pathway, and their signaling activity is terminated by an enzyme called fatty acid amide hydrolase (FAAH), which hydrolyzes NAEs to ethanolamine and their corresponding free fatty acids. Bioinformatic approaches led to the identification of plant homologues of FAAH that are capable of hydrolyzing NAEs in vitro. To better understand the role of NAEs in plants, we identified T-DNA knockouts to Arabidopsis FAAH (AtFAAH; At5g64440) and generated plants overexpressing AtFAAH. Here we show that seeds of AtFAAH knockouts had elevated levels of endogenous NAEs, and seedling growth was hypersensitive to exogenously applied NAE. On the other hand, seeds and seedlings of AtFAAH overexpressors had lower endogenous NAE content, and seedlings were less sensitive to exogenous NAE. Moreover, AtFAAH overexpressors displayed enhanced seedling growth and increased cell size. AtFAAH expression and FAAH catalytic activity increased during seed germination and seedling growth, consistent with the timing of NAE depletion during seedling establishment. Collectively, our results show that AtFAAH is one, but not the only, modulator of endogenous NAE levels in plants, and that NAE depletion likely participates in the regulation of plant growth.


The Plant Cell | 2007

N-Acylethanolamine Metabolism Interacts with Abscisic Acid Signaling in Arabidopsis thaliana Seedlings

Neal D. Teaster; Christy M. Motes; Yuhong Tang; William Wiant; Matthew Q. Cotter; Yuh-Shuh Wang; Aruna Kilaru; Barney J. Venables; Karl H. Hasenstein; Gabriel Gonzalez; Elison B. Blancaflor; Kent D. Chapman

N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. In plants, NAEs are generally elevated in desiccated seeds, suggesting that they may play a role in seed physiology. NAE and abscisic acid (ABA) levels were depleted during seed germination, and both metabolites inhibited the growth of Arabidopsis thaliana seedlings within a similar developmental window. Combined application of low levels of ABA and NAE produced a more dramatic reduction in germination and growth than either compound alone. Transcript profiling and gene expression studies in NAE-treated seedlings revealed elevated transcripts for a number of ABA-responsive genes and genes typically enriched in desiccated seeds. The levels of ABI3 transcripts were inversely associated with NAE-modulated growth. Overexpression of the Arabidopsis NAE degrading enzyme fatty acid amide hydrolase resulted in seedlings that were hypersensitive to ABA, whereas the ABA-insensitive mutants, abi1-1, abi2-1, and abi3-1, exhibited reduced sensitivity to NAE. Collectively, our data indicate that an intact ABA signaling pathway is required for NAE action and that NAE may intersect the ABA pathway downstream from ABA. We propose that NAE metabolism interacts with ABA in the negative regulation of seedling development and that normal seedling establishment depends on the reduction of the endogenous levels of both metabolites.


Plant Journal | 2008

Overexpression of a fatty acid amide hydrolase compromises innate immunity in Arabidopsis

Li Kang; Yuh-Shuh Wang; Srinivasa Rao Uppalapati; Keri Wang; Yuhong Tang; Vatsala Vadapalli; Barney J. Venables; Kent D. Chapman; Elison B. Blancaflor; Kirankumar S. Mysore

N-acylethanolamines are a group of lipid mediators that accumulate under a variety of neurological and pathological conditions in mammals. N-acylethanolamine signaling is terminated by the action of diverse hydrolases, among which fatty acid amide hydrolase (FAAH) has been well characterized. Here, we show that transgenic Arabidopsis lines overexpressing an AtFAAH are more susceptible to the bacterial pathogens Pseudomonas syringae pv. tomato and P. syringae pv. maculicola. AtFAAH overexpressors also were highly susceptible to non-host pathogens P. syringae pv. syringae and P. syringae pv. tabaci. AtFAAH overexpressors had lower amounts of jasmonic acid, abscisic acid and both free and conjugated salicylic acid (SA), compared with the wild-type. Gene expression studies revealed that transcripts of a number of plant defense genes, as well as genes involved in SA biosynthesis and signaling, were lower in AtFAAH overexpressors than wild-type plants. Our data suggest that FAAH overexpression alters phytohormone accumulation and signaling which in turn compromises innate immunity to bacterial pathogens.


International Review of Cytology-a Survey of Cell Biology | 2006

Organization and Function of the Actin Cytoskeleton in Developing Root Cells

Elison B. Blancaflor; Yuh-Shuh Wang; Christy M. Motes

The actin cytoskeleton is a highly dynamic structure, which mediates various cellular functions in large part through accessory proteins that tilt the balance between monomeric G-actin and filamentous actin (F-actin) or by facilitating interactions between actin and the plasma membrane, microtubules, and other organelles. Roots have become an attractive model to study actin in plant development because of their simple anatomy and accessibility of some root cell types such as root hairs for microscopic analyses. Roots also exhibit a remarkable developmental plasticity and possess a delicate sensory system that is easily manipulated, so that one can design experiments addressing a range of important biological questions. Many facets of root development can be regulated by the diverse actin network found in the various root developmental regions. Various molecules impinge on this actin scaffold to define how a particular root cell type grows or responds to a specific environmental signal. Although advances in genomics are leading the way toward elucidating actin function in roots, more significant strides will be realized when such tools are combined with improved methodologies for accurately depicting how actin is organized in plant cells.


The Plant Cell | 2016

A Dominant Mutation in the HT1 Kinase Uncovers Roles of MAP Kinases and GHR1 in CO2-Induced Stomatal Closure

Hanna Hõrak; Maija Sierla; Kadri Tõldsepp; Cun Wang; Yuh-Shuh Wang; Maris Nuhkat; Ervin Valk; Priit Pechter; Ebe Merilo; Jarkko Salojärvi; Kirk Overmyer; Mart Loog; Mikael Brosché; Julian I. Schroeder; Jaakko Kangasjärvi; Hannes Kollist

MPK4 and MPK12 inhibit the activity of protein kinase HT1, which in turn controls SLAC1 anion channel activation by OST1 and GHR1 in stomatal CO2 signaling. Activation of the guard cell S-type anion channel SLAC1 is important for stomatal closure in response to diverse stimuli, including elevated CO2. The majority of known SLAC1 activation mechanisms depend on abscisic acid (ABA) signaling. Several lines of evidence point to a parallel ABA-independent mechanism of CO2-induced stomatal regulation; however, molecular details of this pathway remain scarce. Here, we isolated a dominant mutation in the protein kinase HIGH LEAF TEMPERATURE1 (HT1), an essential regulator of stomatal CO2 responses, in an ozone sensitivity screen of Arabidopsis thaliana. The mutation caused constitutively open stomata and impaired stomatal CO2 responses. We show that the mitogen-activated protein kinases (MPKs) MPK4 and MPK12 can inhibit HT1 activity in vitro and this inhibition is decreased for the dominant allele of HT1. We also show that HT1 inhibits the activation of the SLAC1 anion channel by the protein kinases OPEN STOMATA1 and GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) in Xenopus laevis oocytes. Notably, MPK12 can restore SLAC1 activation in the presence of HT1, but not in the presence of the dominant allele of HT1. Based on these data, we propose a model for sequential roles of MPK12, HT1, and GHR1 in the ABA-independent regulation of SLAC1 during CO2-induced stomatal closure.


PLOS Biology | 2016

Natural Variation in Arabidopsis Cvi-0 Accession Reveals an Important Role of MPK12 in Guard Cell CO2 Signaling

Liina Jakobson; Lauri Vaahtera; Kadri Tõldsepp; Maris Nuhkat; Cun Wang; Yuh-Shuh Wang; Hanna Hõrak; Ervin Valk; Priit Pechter; Yana Sindarovska; Jing Tang; Chuanlei Xiao; Yang Xu; Ulvi Gerst Talas; Alfonso T. García-Sosa; Saijaliisa Kangasjärvi; Uko Maran; Maido Remm; M. Rob G. Roelfsema; Honghong Hu; Jaakko Kangasjärvi; Mart Loog; Julian I. Schroeder; Hannes Kollist; Mikael Brosché

Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO2 for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO2-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO2-insensitivity phenotypes of a mutant cis (CO2-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)—a central node in guard cell CO2 signaling—and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO2 signaling controls plant water management.


Frontiers in Plant Science | 2012

Overexpression of Fatty Acid Amide Hydrolase Induces Early Flowering in Arabidopsis thaliana

Neal D. Teaster; Jantana Keereetaweep; Aruna Kilaru; Yuh-Shuh Wang; Yuhong Tang; Christopher N.-Q. Tran; Brian G. Ayre; Kent D. Chapman; Elison B. Blancaflor

N-acylethanolamines (NAEs) are bioactive lipids derived from the hydrolysis of the membrane phospholipid N-acylphosphatidylethanolamine (NAPE). In animal systems this reaction is part of the “endocannabinoid” signaling pathway, which regulates a variety of physiological processes. The signaling function of NAE is terminated by fatty acid amide hydrolase (FAAH), which hydrolyzes NAE to ethanolamine and free fatty acid. Our previous work in Arabidopsis thaliana showed that overexpression of AtFAAH (At5g64440) lowered endogenous levels of NAEs in seeds, consistent with its role in NAE signal termination. Reduced NAE levels were accompanied by an accelerated growth phenotype, increased sensitivity to abscisic acid (ABA), enhanced susceptibility to bacterial pathogens, and early flowering. Here we investigated the nature of the early flowering phenotype of AtFAAH overexpression. AtFAAH overexpressors flowered several days earlier than wild type and AtFAAH knockouts under both non-inductive short day (SD) and inductive long day (LD) conditions. Microarray analysis revealed that the FLOWERING LOCUS T (FT) gene, which plays a major role in regulating flowering time, and one target MADS box transcription factor, SEPATALLA3 (SEP3), were elevated in AtFAAH overexpressors. Furthermore, AtFAAH overexpressors, with the early flowering phenotype had lower endogenous NAE levels in leaves compared to wild type prior to flowering. Exogenous application of NAE 12:0, which was reduced by up to 30% in AtFAAH overexpressors, delayed the onset of flowering in wild type plants. We conclude that the early flowering phenotype of AtFAAH overexpressors is, in part, explained by elevated FT gene expression resulting from the enhanced NAE hydrolase activity of AtFAAH, suggesting that NAE metabolism may participate in floral signaling pathways.

Collaboration


Dive into the Yuh-Shuh Wang's collaboration.

Top Co-Authors

Avatar

Elison B. Blancaflor

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Kent D. Chapman

University of North Texas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge