Yuhai Chen
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuhai Chen.
Oncogene | 2015
Guijie Guo; Kang Q; Xiaomei Zhu; Qinghuang Chen; Xuefei Wang; Yuhai Chen; Jing Ouyang; Lianfeng Zhang; Tan H; Runsheng Chen; Shile Huang; Ji-Long Chen
Aberrant expression of long noncoding RNAs (lncRNAs) is associated with various human cancers. However, the role of lncRNAs in Bcr-Abl-mediated chronic myeloid leukemia (CML) is unknown. In this study, we performed a comprehensive analysis of lncRNAs in human CML cells using an lncRNA cDNA microarray and identified an lncRNA termed lncRNA-BGL3 that acted as a key regulator of Bcr-Abl-mediated cellular transformation. Notably, we observed that lncRNA-BGL3 was highly induced in response to disruption of Bcr-Abl expression or by inhibiting Bcr-Abl kinase activity in K562 cells and leukemic cells derived from CML patients. Ectopic expression of lncRNA-BGL3 sensitized leukemic cells to undergo apoptosis and inhibited Bcr-Abl-induced tumorigenesis. Furthermore, transgenic (TG) mice expressing lncRNA-BGL3 were generated. We found that TG expression of lncRNA-BGL3 alone in mice was sufficient to impair primary bone marrow transformation by Bcr-Abl. Interestingly, we identified that lncRNA-BGL3 was a target of miR-17, miR-93, miR-20a, miR-20b, miR-106a and miR-106b, microRNAs that repress mRNA of phosphatase and tensin homolog (PTEN). Further experiments demonstrated that lncRNA-BGL3 functioned as a competitive endogenous RNA for binding these microRNAs to cross-regulate PTEN expression. Additionally, our experiments have begun to address the mechanism of how lncRNA-BGL3 is regulated in the leukemic cells and showed that Bcr-Abl repressed lncRNA-BGL3 expression through c-Myc-dependent DNA methylation. Taken together, these results reveal that Bcr-Abl-mediated cellular transformation critically requires silence of tumor-suppressor lncRNA-BGL3 and suggest a potential strategy for the treatment of Bcr-Abl-positive leukemia.
Journal of Biological Chemistry | 2012
Song Wang; Hua Li; Yuhai Chen; Haitao Wei; George F. Gao; Hongqiang Liu; Shile Huang; Ji-Long Chen
Background: Influenza virus NA is transported to the host cell surface. Results: Cdc42 promotes the transport of NA to the plasma membranes, whereas ARHGAP21 inhibits this process. Conclusion: Cdc42 positively and ARHGAP21 negatively regulate NA transport to the cell surface and virus replication. Significance: Identification of host factors involved in regulating NA transport is critical for understanding influenza virus replication. Influenza virus neuraminidase (NA) is transported to the virus assembly site at the plasma membrane and is a major viral envelope component that plays a critical role in the release of progeny virions and in determination of host range restriction. However, little is known about the host factors that are involved in regulating the intracellular and cell surface transport of NA. Here we identified the Cdc42-specific GAP, ARHGAP21 differentially expressed in host cells infected with influenza A virus using cDNA microarray analysis. Furthermore, we have investigated the involvement of Rho family GTPases in NA transport to the cell surface. We found that expression of constitutively active or inactive mutants of RhoA or Rac1 did not significantly affect the amount of NA that reached the cell surface. However, expression of constitutively active Cdc42 or depletion of ARHGAP21 promoted the transport of NA to the plasma membranes. By contrast, cells expressing shRNA targeting Cdc42 or overexpressing ARHGAP21 exhibited a significant decrease in the amount of cell surface-localized NA. Importantly, silencing Cdc42 reduced influenza A virus replication, whereas silencing ARHGAP21 increased the virus replication. Together, our results reveal that ARHGAP21- and Cdc42-based signaling regulates the NA transport and thereby impacts virus replication.
PLOS Pathogens | 2014
Haitao Wei; Song Song Wang; Qinghuang Chen; Yuhai Chen; Xiaojuan Chi; Lianfeng Zhang; Shile Huang; George F. Gao; Ji-Long Chen
Innate cytokine response provides the first line of defense against influenza virus infection. However, excessive production of cytokines appears to be critical in the pathogenesis of influenza virus. Interferon lambdas (IFN-λ) have been shown to be overproduced during influenza virus infection, but the precise pathogenic processes of IFN-λ production have yet to be characterized. In this report, we observed that influenza virus induced robust expression of IFN-λ in alveolar epithelial cells (A549) mainly through a RIG-I-dependent pathway, but IFN-λ-induced phosphorylation of the signal transducer and activator of transcription protein 1 (STAT1) was dramatically inhibited in the infected cells. Remarkably, influenza virus infection induced robust expression of suppressor of cytokine signaling-1 (SOCS-1), leading to inhibition of STAT1 activation. Interestingly, the virus-induced SOCS-1 expression was cytokine-independent at early stage of infection both in vitro and in vivo. Using transgenic mouse model and distinct approaches altering the expression of SOCS-1 or activation of STAT signaling, we demonstrated that disruption of the SOCS-1 expression or expression of constitutively active STAT1 significantly reduced the production of IFN-λ during influenza virus infection. Furthermore, we revealed that disruption of IFN-λ signaling pathway by increased SOCS-1 protein resulted in the activation of NF-κB and thereby enhanced the IFN-λ expression. Together, these data imply that suppression of IFN-λ signaling by virus-induced SOCS-1 causes an adaptive increase in IFN-λ expression by host to protect cells against the viral infection, as a consequence, leading to excessive production of IFN-λ with impaired antiviral response.
Journal of Virology | 2014
Song Wang; Xiaojuan Chi; Haitao Wei; Yuhai Chen; Zhilong Chen; Shile Huang; Ji-Long Chen
ABSTRACT Although alteration in host cellular translation machinery occurs in virus-infected cells, the role of such alteration and the precise pathogenic processes are not well understood. Influenza A virus (IAV) infection shuts off host cell gene expression at transcriptional and translational levels. Here, we found that the protein level of eukaryotic translation initiation factor 4B (eIF4B), an integral component of the translation initiation apparatus, was dramatically reduced in A549 cells as well as in the lung, spleen, and thymus of mice infected with IAV. The decrease in eIF4B level was attributed to lysosomal degradation of eIF4B, which was induced by viral NS1 protein. Silencing eIF4B expression in A549 cells significantly promoted IAV replication, and conversely, overexpression of eIF4B markedly inhibited the viral replication. Importantly, we observed that eIF4B knockdown transgenic mice were more susceptible to IAV infection, exhibiting faster weight loss, shorter survival time, and more-severe organ damage. Furthermore, we demonstrated that eIF4B regulated the expression of interferon-induced transmembrane protein 3 (IFITM3), a critical protein involved in immune defense against a variety of RNA viruses, including influenza virus. Taken together, our findings reveal that eIF4B plays an important role in host defense against IAV infection at least by regulating the expression of IFITM3, which restricts viral entry and thereby blocks early stages of viral production. These data also indicate that influenza virus has evolved a strategy to overcome host innate immunity by downregulating eIF4B protein. IMPORTANCE Influenza A virus (IAV) infection stimulates the host innate immune system, in part, by inducing interferons (IFNs). Secreted IFNs activate the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, leading to elevated transcription of a large group of IFN-stimulated genes that have antiviral function. To circumvent the host innate immune response, influenza virus has evolved multiple strategies for suppressing the production of IFNs. Here, we show that IAV infection induces lysosomal degradation of eIF4B protein; and eIF4B inhibits IAV replication by upregulating expression of interferon-induced transmembrane protein 3 (IFITM3), a key protein that protects the host from virus infection. Our finding illustrates a critical role of eIF4B in the host innate immune response and provides novel insights into the complex mechanisms by which influenza virus interacts with its host.
Oncogene | 2010
Guijie Guo; Xiaoxue Qiu; Song Song Wang; Yuhai Chen; Paul B. Rothman; Zixu Wang; Wang G; Ji-Long Chen
Abl-mediated transformation requires the activation of multiple pathways involved in the cellular proliferation and survival, including PI3K/AKT and JAK/STAT-dependent Pim kinases. Recently, the E17K mutation in the AKT1 has been associated with multiple human malignancies and leukemia in mice. However, this mutation has not been identified in Abl-transformed cells. We investigated the presence of the AKT1(E17K) mutation in v-Abl-transformed cell clones. AKT1(E17K) was detected in 3 (2.6%) of 116 specimens examined. To show the involvement of AKT1(E17K) directly in v-Abl-mediated tumorigenesis, we infected bone marrow cells from mice with bicistronic retroviruses encoding v-Abl and either wild-type or the mutant AKT1. Interestingly, we found that E17K mutant greatly increased the v-Abl transformation efficiency as compared with wild-type AKT1. Ectopic expression of E17K mutant increased the expression levels of antiapoptotic protein BCL2 and phosphorylation levels of proapoptotic protein BAD. This correlated with an increased protection from imatinib-induced apoptosis in Abl transformants. Furthermore, AKT1(E17K) promotes survival of the Pim-deficient cells, indicating a functional link between AKT and Pim in v-Abl transformation. In addition, AKT1(E17K) delays loss of Pim-1 and Pim-2 protein levels on v-Abl inactivation, which suggests that there exists reciprocal signaling between AKT and Pim in v-Abl transformants.
Nucleic Acids Research | 2015
Fang Li; Yuhai Chen; Zhaoyuan Zhang; Jing Ouyang; Yi Wang; Ruoxiang Yan; Shile Huang; George F. Gao; Guijie Guo; Ji-Long Chen
Protein kinase R (PKR) is a vital component of host innate immunity against viral infection. However, the mechanism underlying inactivation of PKR by influenza A virus (IAV) remains elusive. Here, we found that vault RNAs (vtRNAs) were greatly induced in A549 cells and mouse lungs after infection with IAV. The viral NS1 protein was shown to be the inducer triggering the upregulation of vtRNAs. Importantly, silencing vtRNA in A549 cells significantly inhibited IAV replication, whereas overexpression of vtRNAs markedly promoted the viral replication. Furthermore, in vivo studies showed that disrupting vtRNA expression in mice significantly decreased IAV replication in infected lungs. The vtRNA knockdown animals exhibited significantly enhanced resistance to IAV infection, as evidenced by attenuated acute lung injury and spleen atrophy and consequently increased survival rates. Interestingly, vtRNAs promoted viral replication through repressing the activation of PKR and the subsequent antiviral interferon response. In addition, increased expression of vtRNAs was required for efficient suppression of PKR by NS1 during IAV infection. Moreover, vtRNAs were also significantly upregulated by infections of several other viruses and involved in the inactivation of PKR signaling by these viruses. These results reveal a novel mechanism by which some viruses circumvent PKR-mediated innate immunity.
Oncotarget | 2016
Ke Chen; Jianling Yang; Jianning Li; Xuefei Wang; Yuhai Chen; Shile Huang; Ji-Long Chen
Activation of eIF4B correlates with Abl-mediated cellular transformation, but the precise mechanisms are largely unknown. Here we show that eIF4B is a convergent substrate of JAK/STAT/Pim and PI3K/Akt/mTOR pathways in Abl transformants. Both pathways phosphorylated eIF4B in Abl-transformed cells, and such redundant regulation was responsible for the limited effect of single inhibitor on Abl oncogenicity. Persistent inhibition of one signaling pathway induced the activation of the other pathway and thereby restored the phosphorylation levels of eIF4B. Simultaneous inhibition of the two pathways impaired eIF4B phosphorylation more effectively, and synergistically induced apoptosis in Abl transformed cells and inhibited the growth of engrafted tumors in nude mice. Similarly, the survival of Abl transformants exhibited a higher sensitivity to the pharmacological inhibition, when combined with the shRNA-based silence of the other pathway. Interestingly, such synergy was dependent on the phosphorylation status of eIF4B on Ser422, as overexpression of eIF4B phosphomimetic mutant S422E in the transformants greatly attenuated the synergistic effects of these inhibitors on Abl oncogenicity. In contrast, eIF4B knockdown sensitized Abl transformants to undergo apoptosis induced by the combined blockage. Collectively, the results indicate that eIF4B integrates the signals from Pim and PI3K/Akt/mTOR pathways in Abl-expressing leukemic cells, and is a promising therapeutic target for such cancers.
Veterinary Journal | 2014
Guomin Qian; Song Wang; Xiaojuan Chi; Hua Li; Haitao Wei; Xiaomei Zhu; Yuhai Chen; Ji-Long Chen
Influenza virus neuraminidase (NA) is a major viral envelope glycoprotein, which plays a critical role in viral infection. Although NA functional domains have been determined previously, the precise role of the amino acids located at the N-terminus of avian H5N1 NA for protein expression and intracellular transport to the host plasma membrane is not fully understood. In the present study, a series of N-terminal truncation or deletion mutants of H5N1 NA were generated and their expression and intracellular trafficking were investigated. Protein expression from mutants NAΔ20, NAΔ35, NAΔ40, NAΔ7-20 and NAΔ7-35 was undetectable by immunoblotting and by performing NA activity assays. Mutants NAΔ6, NAΔ11 and NAΔ15-20 showed a marked decreased in protein expression, whereas mutants NAΔ7-15 and NAΔ15 displayed a slight increase in protein expression, compared with that of the native NA protein. These data suggest that amino acid residues 16-20 are vital for NA protein expression, while amino acids 7-15 might suppress NA protein expression. In deletion mutants NAΔ7-15 and NAΔ15 there was an accumulation of NA protein at the juxta-nuclear region, with reduced expression of NA at the cell surface. Although active Cdc42 could promote transport of wild-type NA to the host cell surface, this member of the Rho family of GTPases failed to regulate transport of mutants NAΔ7-15 and NAΔ15. The results of the study reveal that amino acid residues 7-15 of H5N1 NA are critical for its biosynthetic transport to the host cell surface.
Materials Letters | 2006
Xinwen Zhu; D. N. Zheng; W. Peng; J. Li; Yuhai Chen
Journal of Physics D | 2017
Yongxia Zhu; Chunyang Duan; H Y Liu; Yuhai Chen; Y. Wang