Yuhan Tang
Huazhong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuhan Tang.
Food and Chemical Toxicology | 2012
Yuhan Tang; Chao Gao; Mingyou Xing; Yanyan Li; Liping Zhu; Di Wang; Xuefeng Yang; Liegang Liu; Ping Yao
Lipid metabolism disorder and oxidative stress play an important role on the development and progression of alcoholic liver disease (ALD), and mitochondria compartment is presumed as the main source and susceptible target of intracellular ROS. The objective of this study was to evaluate the protective effect of quercetin, a naturally occurring flavonoids possessing both antioxidant and hypolipidemic effect, on ethanol-induced dyslipidemia and oxidative damage focused on mitochondria. Chronic alcohol administration for adult male rats (4.0 g/kg for 90 days) resulted in the leakage of alanine and especially aspartate aminotransferases, and morphological malformation mainly evidenced by sustained lipid infiltration and degenerative changes on mitochondria and rough endoplasmic reticulum, which was markedly alleviated by quercetin (100 mg/kg.bw.) pretreatment. Furthermore, quercetin prophylaxis evidently ameliorated ethanol-stimulated mitochondrial dysfunction manifested by decreased membrane potential and induced permeability transition though suppressing glutathione depletion, enzymatic inactivation of manganese superoxide dismutase and glutathione peroxidase, ROS over-generation, and lipid peroxidation in mitochondria. Quercetin, thus, may protect rat, especially hepatic mitochondria, from chronic ethanol toxicity through its hypolipidemic effect and antioxidative role, highlighting a promising preventive strategy for ALD by naturally occurring phytochemicals.
Colloids and Surfaces B: Biointerfaces | 2014
Liang Liu; Yuhan Tang; Chao Gao; Yanyan Li; Shaodan Chen; Ting Xiong; Juan Li; Min Du; Zhiyong Gong; Hong Chen; Liegang Liu; Ping Yao
Nanobiotechnology has been recently viewed as a promising strategy to improve therapy efficacy by promoting the accumulation of hydrophobic bioactive compounds in tissues. The aim of present study was to formulate a novel quercetin-loaded cationic nanostructured lipid carriers (QR-CNLC) and to evaluate its biodistribution in vivo after oral administration. QR-CNLC were prepared by emulsifying at high temperature and subsequent solidifying at low temperature using various functional ingredients, and its characteristics, including physical index, release profile in vitro, and tissue distribution in vivo, were investigated. The results demonstrated that QR-CNLC exhibited an average particle size 126.6 nm, a zeta potential of 40.5 mV and 89.3% entrapment efficiency. QR-CNLC performed slower release compared with quercetin solution in vitro. QR-CNLC showed higher AUC (area under tissue concentration-time curve) value and higher Cmax value in lung, liver and kidney compared with control group. The value of relative intake rate (re) for lung, liver and kidney was 1.57, 1.51 and 1.68, respectively, which revealed that quercetin can be significantly accumulated in lung, kidney and liver after oral administration of QR-CNLC compared with quercetin suspension. In conclusion, cationic nanostructured lipid carriers may be an attractive nanocarrier system for oral delivery of hydrophobic functional components.
Phytomedicine | 2013
Yuhan Tang; Hongtao Tian; Yanru Shi; Chao Gao; Mingyou Xing; Wei Yang; Wei Bao; Di Wang; Liegang Liu; Ping Yao
Naturally occuring quercetin protects hepatocytes from ethanol-induced oxidative stress, and heme oxygenase-1 (HO-1) induction and carbon monoxide (CO) metabolite may be implicated in the beneficial effect. However, the precise mechanism by which quercetin counteracts CYP2E1-mediated ethanol hepatotoxicity through HO-1 system is still remained unclear. To explore the potential mechanism, herein, ethanol (4.0 g/kg.bw.) was administrated to rats for 90 days. Our data showed that chronic ethanol over-activated CYP2E1 but suppressed HO-1 with concurrent hepatic oxidative damage, which was partially normalized by quercetin (100mg/kg.bw.). Quercetin (100 μM) induced HO-1 and depleted heme pool when incubated to human hepatocytes. Ethanol-stimulated (100mM) CYP2E1 upregulation was suppressed by quercetin but further enhanced by HO-1 inhibition with resultant heme accumulation. CO scavenging blocked the suppression of quercetin only on CYP2E1 activity. CO donor dose-dependently inactivated CYP2E1 of ethanol-incubated microsome, which was mimicked by HO-1 substrate but abolished by CO scavenger. Thus, CYP2E1-mediated ethanol hepatotoxicity was alleviated by quercetin through HO-1 induction. Depleted heme pool and CO releasing limited protein synthesis and inhibited enzymatic activity of CYP2E1, respectively.
Toxicology and Applied Pharmacology | 2013
Yanyan Li; Chao Gao; Yanru Shi; Yuhan Tang; Liang Liu; Ting Xiong; Min Du; Mingyou Xing; Liegang Liu; Ping Yao
Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8mg/kg for mice or 20μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals.
IEEE Transactions on Applied Superconductivity | 2014
Shifeng Shen; Yuhan Tang; Li Ren; Meng Song; Kunnan Cao; Dada Wang; Hongda Dong; Xinrong Zhao; Baichao Chen; Yun Xu; J. Li; J. Shi
In order to flexibly compensate reactive power, it is necessary to develop a controllable reactor in long distance and ultrahigh voltage system. A leakage flux-controlled reactor (LFCR) is developed in this paper. The operation principles of LFCR are discussed in detail, and a 380 V single-phase LFCR prototype is developed. Relevant experiments have been done to test its performance. The results of the experiments indicate that LFCR has no harmonic and the reactance of LFCR is stable. Also, LFCR with two control windings can realize four kinds of reactance adjustment rates: 1.94%, 75.99%, 90.53%, and 99.05%.
Journal of Nutritional Biochemistry | 2014
Yuhan Tang; Yanyan Li; Haiyan Yu; Chao Gao; Liang Liu; Shaodan Chen; Mingyou Xing; Liegang Liu; Ping Yao
Emerging evidence has demonstrated that chronic ethanol exposure induces iron overload, enhancing ethanol-mediated liver damage. The purpose of this study was to explore the effects of the naturally occurring compound quercetin on ethanol-induced iron overload and liver damage, focusing on the signaling pathway of the iron regulatory hormone hepcidin. Adult male C57BL/6J mice were pair-fed with isocaloric-Lieber De Carli diets containing ethanol (accounting for 30% of total calories) and/or carbonyl iron (0.2%) and treated with quecertin (100 mg/kg body weight) for 15 weeks. Mouse primary hepatocytes were incubated with ethanol (100 mM) and quercetin (100 μM) for 24 h. Mice exposed to either ethanol or iron presented significant fatty infiltration and iron deposition in the liver; these symptoms were exacerbated in mice cotreated with ethanol and iron. Quercetin attenuated the abnormity induced by ethanol and/or iron. Ethanol suppressed BMP6 and intranuclear SMAD4 as well as decreased hepcidin expression. These effects were partially alleviated by quercetin supplementation in mice and hepatocytes. Importantly, ethanol caused suppression of SMAD4 binding to the HAMP promoter and of hepcidin messenger RNA expression. These effects were exacerbated by anti-BMP6 antibody and partially alleviated by quercetin or human recombinant BMP6 in cultured hepatocytes. In contrast, co-treatment with iron and ethanol, especially exposure of iron alone, activated BMP6/SMAD4 pathway and up-regulated hepcidin expression, which was also normalized by quercetin in vivo. Quercetin prevented ethanol-induced hepatic iron overload different from what carbonyl iron diet elicited in the mechanism, by regulating hepcidin expression via the BMP6/SMAD4 signaling pathway.
Human & Experimental Toxicology | 2014
Yong Li; Y Deng; Yuhan Tang; Haiyan Yu; Chao Gao; L. Liu; Ping Yao
Accumulating evidence has shown that ethanol-induced iron overload plays a crucial role in the development and progression of alcoholic liver disease. We designed the present study to investigate the potential protective effect of quercetin, a naturally occurring iron-chelating antioxidant on alcoholic iron overload and oxidative stress. Ethanol-incubated (100 mmol/L) rat primary hepatocytes were co-treated by quercetin (100 µmol/L) and different dose of ferric nitrilotriacetate (Fe-NTA) for 24 h. When the hepatic enzyme releases in the culture medium, redox status of hepatocytes and the intercellular labile iron pool (LIP) level were assayed. Our data showed that Fe-NTA dose dependently induced cellular leakage of aspartate transaminase and lactate dehydrogenase, glutathione depletion, superoxide dismutase inactivation, and overproduction of malondialdehyde) and reactive oxygen species (ROS) of intact and especially ethanol-incubated hepatocytes. The oxidative damage resulted from ethanol, Fe-NTA, and especially their combined treatment was substantially alleviated by quercetin, accompanying the corresponding normalization of intercellular LIP level. Iron in excess, thus, may aggravate ethanol hepatotoxicity through Fenton-active LIP, and quercetin attenuated ethanol-induced iron and oxidative stress. To maintain intercellular LIP contributes to the hepatoprotective effect of quercetin besides its direct ROS-quenching activity.
Nutrients | 2016
Xiao Yu; Yanyan Xu; Shanshan Zhang; Jian Sun; Peiyi Liu; Lin Xiao; Yuhan Tang; Liegang Liu; Ping Yao
Emerging evidence suggested mitophagy activation mitigates ethanol-induced liver injury. However, the effect of ethanol on mitophagy is inconsistent. Importantly, the understanding of mitophagy status after chronic ethanol consumption is limited. This study evaluated the effect of quercetin, a naturally-occurring flavonoid, on chronic ethanol-induced mitochondrial damage focused on mitophagy. An ethanol regime to mice for 15 weeks (accounting for 30% of total calories) led to significant mitochondrial damage as evidenced by changes of the mitochondrial ultrastructure, loss of mitochondrial membrane potential and remodeling of membrane lipid composition, which was greatly attenuated by quercetin (100 mg/kg.bw). Moreover, quercetin blocked chronic ethanol-induced mitophagy suppression as denoted by mitophagosomes-lysosome fusion and mitophagy-related regulator elements, including LC3II, Parkin, p62 and voltage-dependent anion channel 1 (VDAC1), paralleling with increased FoxO3a nuclear translocation. AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase 2 (ERK2), instead of AKT and Sirtuin 1, were involved in quercetin-mediated mitophagy activation. Quercetin alleviated ethanol-elicited mitochondrial damage through enhancing mitophagy, highlighting a promising preventive strategy for alcoholic liver disease.
Oxidative Medicine and Cellular Longevity | 2016
Yuhan Tang; Juan Li; Chao Gao; Yanyan Xu; Yanyan Li; Xiao Yu; Jing Wang; Liegang Liu; Ping Yao
The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS) and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min) resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw). Intense exercise and thapsigargin- (Tg-) induced ERS (glucose-regulated protein 78, GRP78) and inflammatory cytokines levels (IL-6 and TNF-α) were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K) induction, Ca2+ restoration, and blockade of the activities of Jun N-terminal kinase (JNK), activating transcription factor 6 (ATF6) and especially NF-κB (p65 and p50 nuclear translocation). A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor), AEBSF (ATF6 inhibitor), and especially PDTC (NF-κB inhibitor) enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals.
Alcohol | 2013
Qinfeng Jie; Yuhan Tang; Yue Deng; Yanyan Li; Yanru Shi; Chao Gao; Mingyou Xing; Di Wang; Liegang Liu; Ping Yao
To attenuate alcohol liver disease (ALD) is extremely urgent since ALD has been emerged as a major liver disease. The aim of the present study is to investigate the hepatoprotective effect against ethanol-induced injury of bilirubin, a product of heme metabolism degradation via HO and biliverdin reductase catalysis. Ethanol-incubated primary rat hepatocytes (100 mmol/L) were treated by quercetin, bilirubin, inflammatory factors, and/or HO-1 inducer/inhibitor for 24 h, and the cellular damage was assayed. Quercetin lowered ethanol-induced glutathione depletion and superoxide dismutase inactivation, inhibited the overproduction of malondialdehyde and reactive oxygen species, and decreased the leakage of cellular aspartate aminotransferase and lactate dehydrogenase, accompanying the normalization of bilirubin level. The effect of quercetin was mimicked by exogenous bilirubin in a dose-dependent manner to some extent (within 25 μmol/L) and pharmacological HO-1 inducer hemin, but abolished by HO-1 inhibitor zinc protoporphyrin-IX. Inflammatory challenge of TNF-α plus IL-6 further aggravated ethanol-induced oxidative damage, which was also attenuated by bilirubin in part. These findings shed a light on the anti-oxidative and anti-inflammatory role of bilirubin released from quercetin/HO-1 and biliverdin reductase pathway against ethanol hepatotoxicity and highlight a prospective strategy of nutritional intervention for ALD by naturally occurring quercetin to induce HO-1 with the release of bioactive end-products.