Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuji Piao is active.

Publication


Featured researches published by Yuji Piao.


Neuro-oncology | 2010

Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice.

John F. de Groot; Gregory N. Fuller; Ashok J. Kumar; Yuji Piao; Karina Eterovic; Yongjie Ji; Charles A. Conrad

Patients with recurrent malignant glioma treated with bevacizumab, a monoclonal antibody to vascular endothelial growth factor (VEGF), alone or in combination with irinotecan have had impressive reductions in MRI contrast enhancement and vasogenic edema. Responses to this regimen, as defined by a decrease in contrast enhancement, have led to significant improvements in progression-free survival rates but not in overall survival duration. Some patients for whom this treatment regimen fails have an uncharacteristic pattern of tumor progression, which can be observed radiographically as an increase in hyperintensity on T2-weighted or fluid-attenuated inverse recovery (FLAIR) MRI. To date, there have been no reports of paired correlations between radiographic results and histopathologic findings describing the features of this aggressive tumor phenotype. In this study, we correlate such findings for 3 illustrative cases of gliomas that demonstrated an apparent phenotypic shift to a predominantly infiltrative pattern of tumor progression after treatment with bevacizumab. Pathologic examination of abnormal FLAIR areas on MRI revealed infiltrative tumor with areas of thin-walled blood vessels, suggesting vascular “normalization,” which was uncharacteristically adjacent to regions of necrosis. High levels of insulin-like growth factor binding protein-2 and matrix metalloprotease-2 expression were seen within the infiltrating tumor. In an attempt to better understand this infiltrative phenotype associated with anti-VEGF therapy, we forced a highly angiogenic, noninvasive orthotopic U87 xenograft tumor to become infiltrative by treating the mice with bevacizumab. This model mimicked many of the histopathologic findings from the human cases and will augment the discovery of alternative or additive therapies to prevent this type of tumor recurrence in clinical practice.


Clinical Cancer Research | 2009

Mediators of Glioblastoma Resistance and Invasion during Antivascular Endothelial Growth Factor Therapy

Agda K. Lucio-Eterovic; Yuji Piao; John F. de Groot

Purpose: Vascular endothelial growth factor (VEGF) has been identified as a critical regulator of angiogenesis. Currently, several different strategies are being used to target the VEGF-VEGF receptor signal transduction pathway in glioblastoma. Although anti-VEGF therapy seems be effective in normalizing abnormal tumor vasculature, leading to an enhanced response to radiation and chemotherapy, tumors eventually become resistant to the therapy and adopt a highly infiltrative and invasive phenotype. Experimental Design: In the present study, we evaluated the effects of anti-VEGF therapy (bevacizumab) on glioblastoma invasion both in vitro and in vivo and evaluated the angiogenesis- and invasion-related mediators of developed resistance to this therapy. Results: We found that glioblastoma tumors escaped from antiangiogenic treatment by (a) reactivating angiogenesis through up-regulation of other proangiogenic factors and (b) invading normal brain areas, which was seen in association with up-regulation of matrix metalloproteinase (MMP)-2, MMP-9, and MMP-12; secreted protein, acidic, cysteine-rich; and tissue inhibitor of metalloproteinase 1. In addition to the paracrine effects of VEGF on endothelial cells, autocrine VEGF signaling seemed to regulate glioblastoma invasion because anti-VEGF therapy increased tumor invasiveness in vitro. Conclusions: Collectively, these findings reinforce the importance of VEGF in regulating tumor invasion and identify potential mediators of resistance to targeted VEGF therapy. These results will be important for developing novel combination therapies to overcome this resistance phenotype.


Neuro-oncology | 2012

Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype

Yuji Piao; Ji Liang; Lindsay Holmes; Amado J. Zurita; Verlene Henry; John V. Heymach; John F. de Groot

Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis. Inhibiting the VEGF-VEGF receptor (R) signal transduction pathway in glioblastoma has recently been shown to delay progression, but the relative benefit and mechanisms of response and failure of anti-VEGF therapy and VEGFR inhibitors are not well understood. The purpose of our study was to evaluate the relative effectiveness of VEGF sequestration and/or VEGFR inhibition on orthotopic tumor growth and the mechanism(s) of treatment resistance. We evaluated, not only, the effects of anti-VEGF therapy (bevacizumab), anti-VEGFR therapy (sunitinib), and the combination on the survival of mice bearing orthotopic gliomas, but also the differential effects of the treatments on tumor vascularity, cellular proliferation, mesenchymal and stem cell markers, and myeloid cell infiltration using flow cytometry and immunohistochemistry. Bevacizumab significantly prolonged survival compared with the control or sunitinib alone. Both antiangiogenic agents initially reduced infiltration of macrophages and tumor vascularity. However, multitargeted VEGFR inhibition, but not VEGF sequestration, rapidly created a vascular gradient and more rapidly induced tumor hypoxia. Re-infiltration of macrophages was associated with the induction of hypoxia. Combination treatment with bevacizumab and sunitinib improved animal survival compared with bevacizumab therapy alone. However, at the time of tumor progression, a significant increase in CD11b(+)/Gr1(+) granulocyte infiltration was observed, and tumors developed aggressive mesenchymal features and increased stem cell marker expression. Collectively, our results demonstrate a more prolonged decrease in tumor vascularity with bevacizumab than with sunitinib, associated with a delay in the development of hypoxia and sustained reduction of infiltrated myeloid cells.


Molecular Cancer Therapeutics | 2009

Dasatinib-induced autophagy is enhanced in combination with temozolomide in glioma

Vanessa Milano; Yuji Piao; Tiffany A. LaFortune; John F. de Groot

Glioblastoma is defined by its aggressive invasion, microvascular proliferation, and central necrosis. BMS-354825 (dasatinib) is an ATP-competitive small-molecule inhibitor effective in treating drug-resistant tumors with mutant BCR-ABL, KIT, and epidermal growth factor receptor by blocking tyrosine phosphorylation sites that are critical in tumorigenesis. In studying the action of dasatinib in human glioblastoma, we found that levels of phospho-SRC, AKT, and ribosomal protein S6 were decreased in cell lines treated with low nanomolar concentrations of dasatinib at baseline and following stimulation with epidermal growth factor. Furthermore, an increased sensitivity to dasatinib was noted in glioma cells with functional PTEN. Reduction of invasive potential was observed in vitro at concentrations well below the IC50 of dasatinib, which was corroborated by immunofluorescence staining showing disruption of paxillin localization to focal adhesions and decreases in focal adhesion kinase autophosphorylation. Cell cycle analysis revealed minimal G1 arrest but a significant increase in autophagic cell death in glioma cells treated with dasatinib as assessed by acridine orange staining and a concomitant increase in light chain 3 expression and processing. Combination treatment of glioma cells with dasatinib and temozolomide resulted in a significant increase in cell cycle disruption and autophagic cell death. Dasatinib in combination with temozolomide more effectively increased the therapeutic efficacy of temozolomide than when dasatinib was combined with carboplatin or irinotecan. These results strongly support the clinical use of dasatinib in the treatment of glioblastoma and provide a rationale for combination therapy with dasatinib and temozolomide. [Mol Cancer Ther 2009;8(2):394–406]


Clinical Cancer Research | 2013

Acquired Resistance to Anti-VEGF Therapy in Glioblastoma Is Associated with a Mesenchymal Transition

Yuji Piao; Ji Liang; Lindsay Holmes; Verlene Henry; Erik P. Sulman; John F. de Groot

Purpose: Antiangiogenic therapy reduces vascular permeability and delays progression but may ultimately promote an aggressive treatment-resistant phenotype. The aim of the present study was to identify mechanisms responsible for glioblastoma resistance to antiangiogenic therapy. Experimental Design: Glioma stem cell (GSC) NSC11 and U87 cell lines with acquired resistance to bevacizumab were developed from orthotopic xenografts in nude mice treated with bevacizumab. Genome-wide analyses were used to identify changes in tumor subtype and specific factors associated with resistance. Results: Mice with established parental NSC11 and U87 cells responded to bevacizumab, whereas glioma cell lines derived at the time of acquired resistance to anti-VEGF therapy were resistant to bevacizumab and did not have prolongation of survival compared with untreated controls. Gene expression profiling comparing anti-VEGF therapy-resistant cell lines to untreated controls showed an increase in genes associated with a mesenchymal origin, cellular migration/invasion, and inflammation. Gene-set enrichment analysis showed that bevacizumab-treated tumors showed a highly significant correlation to published mesenchymal gene signatures. Mice bearing resistant tumors showed significantly greater infiltration of myeloid cells in NSC11- and U87-resistant tumors. Invasion-related genes were also upregulated in both NSC11 and U87 resistant cells which had higher invasion rates in vitro compared with their respective parental cell lines. Conclusions: Our studies identify multiple proinflammatory factors associated with resistance and identify a proneural to mesenchymal transition in tumors resistant to antiangiogenic therapy. Clin Cancer Res; 19(16); 4392–403. ©2013 AACR.


Neuro-oncology | 2009

AMPA receptors promote perivascular glioma invasion via β1 integrin–dependent adhesion to the extracellular matrix

Yuji Piao; Li Lu; John F. de Groot

High-grade gliomas release excitotoxic concentrations of glutamate, which has been shown to enhance tumor proliferation and migration. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) glutamate receptors are abundantly expressed at the invading edge of glioblastoma specimens, suggesting they may play an important biologic role in tumor invasion. In this study, we examined potential mechanisms by which AMPA receptor (AMPAR) expression and stimulation promote glioma cell migration and invasion. Overexpression of GluR1, the most abundant AMPAR subunit in gliomas, positively correlated with glioma cell adhesion to type I and type IV collagen, which was decreased in cells with knockdown of GluR1 and with blocking antibodies to beta1 integrin. Furthermore, stimulation of the AMPAR led to detachment of cells from the extracellular matrix (ECM). Immunoprecipitation studies showed that GluR1 associated with the actin cytoskeleton-linked protein band 4.1B (brain type), which may serve as a link between GluR1 and integrins. Overexpression of GluR1 correlated with increased cell-surface expression of beta1 integrin, increased phosphorylation of focal adhesion kinase (FAK-Y397), and enhanced numbers of focal adhesion (FA) complexes. Cells overexpressing GluR1 had increased colocalization of actin and paxillin at FAs and, in several glioma cell lines, significantly increased invasion in an in vitro Matrigel transwell assay. Likewise, in an intracranial xenograft model, overexpression of GluR1 led to perivascular and subependymal glioma cell invasion similar to patterns of tumor dissemination described in human glioblastoma. Together, these results suggest that AMPARs may link signals from the ECM to sites of FA, where signal integration promotes tumor invasion.


Cancer Research | 2007

ICOVIR-5 shows E2F1 addiction and potent antiglioma effect in vivo

Marta M. Alonso; Manel Cascallo; Candelaria Gomez-Manzano; Hong Jiang; B. Nebiyou Bekele; Anna Perez-Gimenez; Frederick F. Lang; Yuji Piao; Ramon Alemany; Juan Fueyo

During 2007, approximately 200,000 people in the United States will be diagnosed with brain tumors. Gliomas account for 77% of primary malignant brain tumors, and the prognosis has hardly changed in the past 20 years, with only 30% of patients with malignant glioma surviving 5 years after diagnosis. Oncolytic adenoviruses are promising therapies for the treatment of gliomas. Here, report the antiglioma activity of the tumor-selective ICOVIR-5 adenovirus, which encompasses an early 1A adenoviral (E1A) deletion in the retinoblastoma (Rb) protein-binding region, substitution of the E1A promoter for E2F-responsive elements, and an RGD-4C peptide motif inserted into the adenoviral fiber to enhance adenoviral tropism. Mechanistic studies showed a dramatic addiction of ICOVIR-5 to the E2F1 oncogene in vitro and in vivo. This addiction was mediated by the occupancy of the ectopic adenoviral E2F1-responsive elements by the endogenous E2F1 protein resulting in high level of E1A expression in cancer cells and potent antiglioma effect. Importantly, we showed for the first time the ability of oncolytic adenoviruses to enhance E2F transcriptional activity in vivo, and we provided direct evidence of the interaction of the E2F1 protein with native and ectopic adenovirus promoters. Restoration of Rb function led to the association of Rb/E2F1 repressor complexes with ICOVIR-5 ectopic E2F1 promoter and subsequent down-modulation of E1A, dramatically impairing adenoviral replication. In xenografted mice, intratumoral injection of ICOVIR-5 resulted in a significant improvement of the median survival (P < 0.0001), and furthermore, led to 37% of long-term survivors free of disease. The antitumor activity of ICOVIR-5 suggests that it has the potential to be an effective agent in the treatment of gliomas.


Molecular Cancer Research | 2006

Expression of the receptor tyrosine kinase Tie2 in neoplastic glial cells is associated with integrin β1-dependent adhesion to the extracellular matrix

Ok Hee Lee; Jing Xu; Juan Fueyo; Gregory N. Fuller; Kenneth D. Aldape; Marta M. Alonso; Yuji Piao; Ta Jen Liu; Frederick F. Lang; B. Nebiyou Bekele; Candelaria Gomez-Manzano

The abnormal function of tyrosine kinase receptors is a hallmark of malignant gliomas. Tie2 receptor tyrosine kinase is a specific endothelial cell receptor whose function is positively regulated by angiopoietin 1 (Ang1). Recently, Tie2 has also been found in the nonvascular compartment of several tumors, including leukemia as well as breast, gastric, and thyroid cancers. There is, however, little information on the function of the Ang1/Tie2 pathway in the non–stromal cells within human tumors. We found that surgical glioblastoma specimens contained a subpopulation of Tie2+/CD31− and Tie2+/GFAP+ cells, suggesting that Tie2 is indeed expressed outside the vascular compartment of gliomas. Furthermore, analysis of a tissue array consisting of 116 human glioma samples showed that Tie2 expression in the neoplastic glial cells was significantly associated with progression from a lower to higher grade. Importantly, Ang1 stimulation of Tie2+ glioma cells resulted in increased adherence of the cells to collagen I and IV, suggesting that Tie2 regulates glioma cell adhesion to the extracellular matrix. Conversely, the down-regulation of Tie2 levels by small interference RNA or the addition of soluble Tie2 abrogated the Ang1-mediated effect on cell adhesion. In studying the expression of cell adhesion molecules, we found that Tie2 activation was related to the up-regulation of integrin β1 levels and the formation of focal adhesions. These results, together with the reported fact that malignant gliomas express high levels of Ang1, suggest the existence of an autocrine loop in malignant gliomas and that a Tie2-dependent pathway modulates cell–to–extracellular matrix adhesion, providing new insights into the highly infiltrative phenotype of human gliomas. (Mol Cancer Res 2006;4(12):915–26)


Clinical Cancer Research | 2014

Neutrophils promote the malignant glioma phenotype through S100A4.

Ji Liang; Yuji Piao; Lindsay Holmes; Gregory N. Fuller; Verlene Henry; Ningyi Tiao; John F. de Groot

Purpose: Antiangiogenic therapy is effective in blocking vascular permeability, inhibiting vascular proliferation, and slowing tumor growth, but studies in multiple cancer types have shown that tumors eventually acquire resistance to blockade of blood vessel growth. Currently, the mechanisms by which this resistance occurs are not well understood. Experimental Design: In this study, we evaluated the effects of neutrophils on glioma biology both in vitro and in vivo and determined target genes by which neutrophils promote the malignant glioma phenotype during anti-VEGF therapy. Results: We found that an increase in neutrophil infiltration into tumors is significantly correlated with glioma grade and in glioblastoma with acquired resistance to anti-VEGF therapy. Our data demonstrate that neutrophils and their condition media increased the proliferation rate of glioblastoma-initiating cells (GIC). In addition, neutrophils significantly increased GICs Transwell migration compared with controls. Consistent with this behavior, coculture with neutrophils promoted GICs to adopt morphologic and gene expression changes consistent with a mesenchymal signature. Neutrophil-promoting tumor progression could be blocked by S100A4 downregulation in vitro and in vivo. Furthermore, S100A4 depletion increased the effectiveness of anti-VEGF therapy in glioma. Conclusions: Collectively, these data suggest that increased recruitment of neutrophils during anti-VEGF therapy promotes glioma progression and may promote treatment resistance. Tumor progression with mesenchymal characteristics is partly mediated by S100A4, the expression of which is increased by neutrophil infiltration. Targeting granulocytes and S100A4 may be effective approaches to inhibit the glioma malignant phenotype and diminish antiangiogenic therapy resistance. Clin Cancer Res; 20(1); 187–98. ©2013 AACR.


Cancer Gene Therapy | 2007

Combination of the oncolytic adenovirus ICOVIR-5 with chemotherapy provides enhanced anti-glioma effect in vivo

Marta M. Alonso; Candelaria Gomez-Manzano; Hong Jiang; Nebiyou Bekele; Yuji Piao; W K A Yung; Ramon Alemany; Juan Fueyo

Novel therapies are clearly needed for gliomas, and the combination of oncolytic vectors with chemotherapy possesses a significant hope for the treatment of this malignancy. In addition, combination with chemotherapy allows for lower virus doses to achieve anticancer effect, thus resulting in lower undesirable toxicities due to viral proteins. In this work, we sought to determine whether combination of an oncolytic adenovirus ICOVIR-5, with RAD001 or temozolomide (TMZ) could result in enhanced anti-glioma effect in vivo. We assessed the in vitro cytotoxic effect and replication properties of ICOVIR-5 in combination with RAD001 or TMZ in U87 MG glioma cell line by MTT and TCID50, respectively. Our data showed that in vitro treatment with RAD001 or TMZ not only interfered with adenovirus replication but, in addition, enhanced its oncolytic properties. To evaluate the in vivo anticancer effect, athymic mice bearing glioma xenografts (5 × 105 U87 MG cells/animal) received a single intratumoral injection of ICOVIR-5 (107 PFU/animal). RAD001 was given as a regimen of 5 mg/kg 5 days per week until the end of the experiment and TMZ was administered for 5 days at 7.5 mg/kg/mice. Of significance, combination of ICOVIR-5 with RAD001 or TMZ showed a potent anti-glioma effect in vivo, resulting in a dramatic extension of the median animal survival and in 20–40% animals becoming free of disease beyond 90 days.

Collaboration


Dive into the Yuji Piao's collaboration.

Top Co-Authors

Avatar

John F. de Groot

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Verlene Henry

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Soon Young Park

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jianwen Dong

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ningyi Tiao

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Erik P. Sulman

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ji Liang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Candelaria Gomez-Manzano

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Juan Fueyo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lindsay Holmes

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge