Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John F. de Groot is active.

Publication


Featured researches published by John F. de Groot.


Neuro-oncology | 2010

Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice.

John F. de Groot; Gregory N. Fuller; Ashok J. Kumar; Yuji Piao; Karina Eterovic; Yongjie Ji; Charles A. Conrad

Patients with recurrent malignant glioma treated with bevacizumab, a monoclonal antibody to vascular endothelial growth factor (VEGF), alone or in combination with irinotecan have had impressive reductions in MRI contrast enhancement and vasogenic edema. Responses to this regimen, as defined by a decrease in contrast enhancement, have led to significant improvements in progression-free survival rates but not in overall survival duration. Some patients for whom this treatment regimen fails have an uncharacteristic pattern of tumor progression, which can be observed radiographically as an increase in hyperintensity on T2-weighted or fluid-attenuated inverse recovery (FLAIR) MRI. To date, there have been no reports of paired correlations between radiographic results and histopathologic findings describing the features of this aggressive tumor phenotype. In this study, we correlate such findings for 3 illustrative cases of gliomas that demonstrated an apparent phenotypic shift to a predominantly infiltrative pattern of tumor progression after treatment with bevacizumab. Pathologic examination of abnormal FLAIR areas on MRI revealed infiltrative tumor with areas of thin-walled blood vessels, suggesting vascular “normalization,” which was uncharacteristically adjacent to regions of necrosis. High levels of insulin-like growth factor binding protein-2 and matrix metalloprotease-2 expression were seen within the infiltrating tumor. In an attempt to better understand this infiltrative phenotype associated with anti-VEGF therapy, we forced a highly angiogenic, noninvasive orthotopic U87 xenograft tumor to become infiltrative by treating the mice with bevacizumab. This model mimicked many of the histopathologic findings from the human cases and will augment the discovery of alternative or additive therapies to prevent this type of tumor recurrence in clinical practice.


Clinical Cancer Research | 2009

Mediators of Glioblastoma Resistance and Invasion during Antivascular Endothelial Growth Factor Therapy

Agda K. Lucio-Eterovic; Yuji Piao; John F. de Groot

Purpose: Vascular endothelial growth factor (VEGF) has been identified as a critical regulator of angiogenesis. Currently, several different strategies are being used to target the VEGF-VEGF receptor signal transduction pathway in glioblastoma. Although anti-VEGF therapy seems be effective in normalizing abnormal tumor vasculature, leading to an enhanced response to radiation and chemotherapy, tumors eventually become resistant to the therapy and adopt a highly infiltrative and invasive phenotype. Experimental Design: In the present study, we evaluated the effects of anti-VEGF therapy (bevacizumab) on glioblastoma invasion both in vitro and in vivo and evaluated the angiogenesis- and invasion-related mediators of developed resistance to this therapy. Results: We found that glioblastoma tumors escaped from antiangiogenic treatment by (a) reactivating angiogenesis through up-regulation of other proangiogenic factors and (b) invading normal brain areas, which was seen in association with up-regulation of matrix metalloproteinase (MMP)-2, MMP-9, and MMP-12; secreted protein, acidic, cysteine-rich; and tissue inhibitor of metalloproteinase 1. In addition to the paracrine effects of VEGF on endothelial cells, autocrine VEGF signaling seemed to regulate glioblastoma invasion because anti-VEGF therapy increased tumor invasiveness in vitro. Conclusions: Collectively, these findings reinforce the importance of VEGF in regulating tumor invasion and identify potential mediators of resistance to targeted VEGF therapy. These results will be important for developing novel combination therapies to overcome this resistance phenotype.


Journal of Clinical Oncology | 2011

Phase II Study of Aflibercept in Recurrent Malignant Glioma: A North American Brain Tumor Consortium Study

John F. de Groot; Kathleen R. Lamborn; Susan M. Chang; Mark R. Gilbert; Timothy F. Cloughesy; Kenneth D. Aldape; Jun Yao; Edward F. Jackson; Frank S. Lieberman; H. Ian Robins; Minesh P. Mehta; Andrew B. Lassman; Lisa M. DeAngelis; W. K. Alfred Yung; Alice Chen; Michael D. Prados; Patrick Y. Wen

PURPOSE Antivascular endothelial growth factor (anti-VEGF) therapy is a promising treatment approach for patients with recurrent glioblastoma. This single-arm phase II study evaluated the efficacy of aflibercept (VEGF Trap), a recombinantly produced fusion protein that scavenges both VEGF and placental growth factor in patients with recurrent malignant glioma. PATIENTS AND METHODS Forty-two patients with glioblastoma and 16 patients with anaplastic glioma who had received concurrent radiation and temozolomide and adjuvant temozolomide were enrolled at first relapse. Aflibercept 4 mg/kg was administered intravenously on day 1 of every 2-week cycle. RESULTS The 6-month progression-free survival rate was 7.7% for the glioblastoma cohort and 25% for patients with anaplastic glioma. Overall radiographic response rate was 24% (18% for glioblastoma and 44% for anaplastic glioma). The median progression-free survival was 24 weeks for patients with anaplastic glioma (95% CI, 5 to 31 weeks) and 12 weeks for patients with glioblastoma (95% CI, 8 to 16 weeks). A total of 14 patients (25%) were removed from the study for toxicity, on average less than 2 months from treatment initiation. The main treatment-related National Cancer Institute Common Terminology Criteria grades 3 and 4 adverse events (38 total) included fatigue, hypertension, and lymphopenia. Two grade 4 CNS ischemias and one grade 4 systemic hemorrhage were reported. Aflibercept rapidly decreases permeability on dynamic contrast enhanced magnetic resonance imaging, and molecular analysis of baseline tumor tissue identified tumor-associated markers of response and resistance. CONCLUSION Aflibercept monotherapy has moderate toxicity and minimal evidence of single-agent activity in unselected patients with recurrent malignant glioma.


Journal of Clinical Oncology | 2015

Feasibility of Large-Scale Genomic Testing to Facilitate Enrollment Onto Genomically Matched Clinical Trials

Funda Meric-Bernstam; Lauren Brusco; Kenna Shaw; Chacha Horombe; Scott Kopetz; Michael A. Davies; Mark Routbort; Sarina Anne Piha-Paul; Filip Janku; Naoto T. Ueno; David S. Hong; John F. de Groot; Vinod Ravi; Yisheng Li; Raja Luthra; Keyur P. Patel; Russell Broaddus; John Mendelsohn; Gordon B. Mills

PURPOSE We report the experience with 2,000 consecutive patients with advanced cancer who underwent testing on a genomic testing protocol, including the frequency of actionable alterations across tumor types, subsequent enrollment onto clinical trials, and the challenges for trial enrollment. PATIENTS AND METHODS Standardized hotspot mutation analysis was performed in 2,000 patients, using either an 11-gene (251 patients) or a 46- or 50-gene (1,749 patients) multiplex platform. Thirty-five genes were considered potentially actionable based on their potential to be targeted with approved or investigational therapies. RESULTS Seven hundred eighty-nine patients (39%) had at least one mutation in potentially actionable genes. Eighty-three patients (11%) with potentially actionable mutations went on genotype-matched trials targeting these alterations. Of 230 patients with PIK3CA/AKT1/PTEN/BRAF mutations that returned for therapy, 116 (50%) received a genotype-matched drug. Forty patients (17%) were treated on a genotype-selected trial requiring a mutation for eligibility, 16 (7%) were treated on a genotype-relevant trial targeting a genomic alteration without biomarker selection, and 40 (17%) received a genotype-relevant drug off trial. Challenges to trial accrual included patient preference of noninvestigational treatment or local treatment, poor performance status or other reasons for trial ineligibility, lack of trials/slots, and insurance denial. CONCLUSION Broad implementation of multiplex hotspot testing is feasible; however, only a small portion of patients with actionable alterations were actually enrolled onto genotype-matched trials. Increased awareness of therapeutic implications and access to novel therapeutics are needed to optimally leverage results from broad-based genomic testing.


Molecular Cancer Therapeutics | 2007

Inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor kinase suppresses glioma proliferation in vitro and in vivo

Ta Jen Liu; Tiffany LaFortune; Toshiyuki Honda; Osamu Ohmori; Shinji Hatakeyama; Thomas Meyer; Dowdy Jackson; John F. de Groot; W. K. Alfred Yung

Multiple genetic aberrations in human gliomas contribute to their highly infiltrative and rapid growth characteristics. Focal adhesion kinase (FAK) regulates tumor migration and invasion. Insulin-like growth factor-I receptor (IGF-IR), whose expression correlates with tumor grade, is involved in proliferation and survival. We hypothesized that inhibiting the phosphorylation of FAK and IGF-IR by NVP-TAE226 (hereafter called TAE226), a novel dual tyrosine kinase inhibitor of FAK and IGF-IR, would suppress the growth and invasion of glioma cells. In culture, TAE226 inhibited extracellular matrix–induced autophosphorylation of FAK (Tyr397). TAE226 also inhibited IGF-I–induced phosphorylation of IGF-IR and activity of its downstream target genes such as MAPK and Akt. TAE226 retarded tumor cell growth as assessed by a cell viability assay and attenuated G2-M cell cycle progression associated with a decrease in cyclin B1 and phosphorylated cdc2 (Tyr15) protein expression. TAE226 treatment inhibited tumor cell invasion by at least 50% compared with the control in an in vitro Matrigel invasion assay. Interestingly, TAE226 treatment of tumor cells containing wild-type p53 mainly exhibited G2-M arrest, whereas tumor cells bearing mutant p53 underwent apoptosis. Induction of apoptosis by TAE226 was substantiated by detection of caspase-3/7 activation and poly(ADP-ribose) polymerase cleavage and by an Annexin V apoptosis assay. More importantly, TAE226 treatment significantly increased the survival rate of animals in an intracranial glioma xenograft model. Collectively, these data show that blocking the signaling pathways of FAK and IGF-IR with TAE226 has the potential to be an efficacious treatment for human gliomas. [Mol Cancer Ther 2007;6(4):1357–67]


Neuro-oncology | 2012

Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype

Yuji Piao; Ji Liang; Lindsay Holmes; Amado J. Zurita; Verlene Henry; John V. Heymach; John F. de Groot

Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis. Inhibiting the VEGF-VEGF receptor (R) signal transduction pathway in glioblastoma has recently been shown to delay progression, but the relative benefit and mechanisms of response and failure of anti-VEGF therapy and VEGFR inhibitors are not well understood. The purpose of our study was to evaluate the relative effectiveness of VEGF sequestration and/or VEGFR inhibition on orthotopic tumor growth and the mechanism(s) of treatment resistance. We evaluated, not only, the effects of anti-VEGF therapy (bevacizumab), anti-VEGFR therapy (sunitinib), and the combination on the survival of mice bearing orthotopic gliomas, but also the differential effects of the treatments on tumor vascularity, cellular proliferation, mesenchymal and stem cell markers, and myeloid cell infiltration using flow cytometry and immunohistochemistry. Bevacizumab significantly prolonged survival compared with the control or sunitinib alone. Both antiangiogenic agents initially reduced infiltration of macrophages and tumor vascularity. However, multitargeted VEGFR inhibition, but not VEGF sequestration, rapidly created a vascular gradient and more rapidly induced tumor hypoxia. Re-infiltration of macrophages was associated with the induction of hypoxia. Combination treatment with bevacizumab and sunitinib improved animal survival compared with bevacizumab therapy alone. However, at the time of tumor progression, a significant increase in CD11b(+)/Gr1(+) granulocyte infiltration was observed, and tumors developed aggressive mesenchymal features and increased stem cell marker expression. Collectively, our results demonstrate a more prolonged decrease in tumor vascularity with bevacizumab than with sunitinib, associated with a delay in the development of hypoxia and sustained reduction of infiltrated myeloid cells.


Nature Reviews Clinical Oncology | 2017

Chimeric antigen receptor T-cell therapy — assessment and management of toxicities

Sattva S. Neelapu; Sudhakar Tummala; Partow Kebriaei; William G. Wierda; Cristina Gutierrez; Frederick L. Locke; Krishna V. Komanduri; Yi Lin; Nitin Jain; Naval Daver; Jason R. Westin; Alison Gulbis; Monica Elena Loghin; John F. de Groot; Sherry Adkins; Suzanne E. Davis; Katayoun Rezvani; Patrick Hwu; Elizabeth J. Shpall

Immunotherapy using T cells genetically engineered to express a chimeric antigen receptor (CAR) is rapidly emerging as a promising new treatment for haematological and non-haematological malignancies. CAR-T-cell therapy can induce rapid and durable clinical responses, but is associated with unique acute toxicities, which can be severe or even fatal. Cytokine-release syndrome (CRS), the most commonly observed toxicity, can range in severity from low-grade constitutional symptoms to a high-grade syndrome associated with life-threatening multiorgan dysfunction; rarely, severe CRS can evolve into fulminant haemophagocytic lymphohistiocytosis (HLH). Neurotoxicity, termed CAR-T-cell-related encephalopathy syndrome (CRES), is the second most-common adverse event, and can occur concurrently with or after CRS. Intensive monitoring and prompt management of toxicities is essential to minimize the morbidity and mortality associated with this potentially curative therapeutic approach; however, algorithms for accurate and consistent grading and management of the toxicities are lacking. To address this unmet need, we formed a CAR-T-cell-therapy-associated TOXicity (CARTOX) Working Group, comprising investigators from multiple institutions and medical disciplines who have experience in treating patients with various CAR-T-cell therapy products. Herein, we describe the multidisciplinary approach adopted at our institutions, and provide recommendations for monitoring, grading, and managing the acute toxicities that can occur in patients treated with CAR-T-cell therapy.


Molecular Cancer Therapeutics | 2009

Dasatinib-induced autophagy is enhanced in combination with temozolomide in glioma

Vanessa Milano; Yuji Piao; Tiffany A. LaFortune; John F. de Groot

Glioblastoma is defined by its aggressive invasion, microvascular proliferation, and central necrosis. BMS-354825 (dasatinib) is an ATP-competitive small-molecule inhibitor effective in treating drug-resistant tumors with mutant BCR-ABL, KIT, and epidermal growth factor receptor by blocking tyrosine phosphorylation sites that are critical in tumorigenesis. In studying the action of dasatinib in human glioblastoma, we found that levels of phospho-SRC, AKT, and ribosomal protein S6 were decreased in cell lines treated with low nanomolar concentrations of dasatinib at baseline and following stimulation with epidermal growth factor. Furthermore, an increased sensitivity to dasatinib was noted in glioma cells with functional PTEN. Reduction of invasive potential was observed in vitro at concentrations well below the IC50 of dasatinib, which was corroborated by immunofluorescence staining showing disruption of paxillin localization to focal adhesions and decreases in focal adhesion kinase autophosphorylation. Cell cycle analysis revealed minimal G1 arrest but a significant increase in autophagic cell death in glioma cells treated with dasatinib as assessed by acridine orange staining and a concomitant increase in light chain 3 expression and processing. Combination treatment of glioma cells with dasatinib and temozolomide resulted in a significant increase in cell cycle disruption and autophagic cell death. Dasatinib in combination with temozolomide more effectively increased the therapeutic efficacy of temozolomide than when dasatinib was combined with carboplatin or irinotecan. These results strongly support the clinical use of dasatinib in the treatment of glioblastoma and provide a rationale for combination therapy with dasatinib and temozolomide. [Mol Cancer Ther 2009;8(2):394–406]


Molecular Cancer Therapeutics | 2005

Targeting integrin-linked kinase inhibits Akt signaling pathways and decreases tumor progression of human glioblastoma

Dimpy Koul; Ruijun Shen; Sherry Bergh; Yiling Lu; John F. de Groot; Ta Jen Liu; Gordon B. Mills; W. K. Alfred Yung

The phosphatidylinositol 3-kinase pathway is an important regulator of a wide spectrum of tumor-related biological processes, including cell proliferation, survival, and motility, as well as neovascularization. Protein kinase B/Akt is activated in a complex manner through the phosphorylation of protein kinase B/Akt on Thr308 and Ser473. Although protein-dependent kinase-1 has been shown to phosphorylate Akt at Thr308, it is not clear whether there is a distinct kinase that exclusively phosphorylates Akt at Ser473. A possible candidate is integrin-linked kinase (ILK), which has been shown to phosphorylate Akt at Ser473 in vitro. ILK is a multidomain focal adhesion protein that is believed to be involved in signal transmission from integrin and growth factor receptors. Further, ILK is implicated in the regulation of anchorage-dependent cell growth/survival, cell cycle progression, invasion and migration, and tumor angiogenesis. In this study, we tested the hypothesis that ILK inhibition would inhibit these processes in gliomas in which it is constitutively expressed. We found that a newly developed small-molecule compound (QLT0267) effectively inhibited signaling through the ILK/Akt cascade in glioma cells by blocking the phosphorylation of Akt and downstream targets, including mammalian target of rapamycin and glycogen synthase kinase-3β. Treatment of glioma cells with 12.5 μmol/L QLT0267 inhibited cell growth by 50% at 48 hours. An anchorage-dependent cell growth assay confirmed the cell growth-inhibitory effect of QLT0267. Further, the decrease in cell growth was associated with a dramatic accumulation of cells in the G2-M phase of the cell cycle. Although the cell growth-inhibitory effects of the ILK inhibitor were achieved only at a high concentration, the QLT0267 was able to reduce cellular invasion and angiogenesis at much lower concentrations as shown by in vitro invasion assays and vascular endothelial growth factor secretion. Thus, blocking the ILK/Akt pathway is a potential strategy for molecular targeted therapy for gliomas.


Clinical Cancer Research | 2013

Acquired Resistance to Anti-VEGF Therapy in Glioblastoma Is Associated with a Mesenchymal Transition

Yuji Piao; Ji Liang; Lindsay Holmes; Verlene Henry; Erik P. Sulman; John F. de Groot

Purpose: Antiangiogenic therapy reduces vascular permeability and delays progression but may ultimately promote an aggressive treatment-resistant phenotype. The aim of the present study was to identify mechanisms responsible for glioblastoma resistance to antiangiogenic therapy. Experimental Design: Glioma stem cell (GSC) NSC11 and U87 cell lines with acquired resistance to bevacizumab were developed from orthotopic xenografts in nude mice treated with bevacizumab. Genome-wide analyses were used to identify changes in tumor subtype and specific factors associated with resistance. Results: Mice with established parental NSC11 and U87 cells responded to bevacizumab, whereas glioma cell lines derived at the time of acquired resistance to anti-VEGF therapy were resistant to bevacizumab and did not have prolongation of survival compared with untreated controls. Gene expression profiling comparing anti-VEGF therapy-resistant cell lines to untreated controls showed an increase in genes associated with a mesenchymal origin, cellular migration/invasion, and inflammation. Gene-set enrichment analysis showed that bevacizumab-treated tumors showed a highly significant correlation to published mesenchymal gene signatures. Mice bearing resistant tumors showed significantly greater infiltration of myeloid cells in NSC11- and U87-resistant tumors. Invasion-related genes were also upregulated in both NSC11 and U87 resistant cells which had higher invasion rates in vitro compared with their respective parental cell lines. Conclusions: Our studies identify multiple proinflammatory factors associated with resistance and identify a proneural to mesenchymal transition in tumors resistant to antiangiogenic therapy. Clin Cancer Res; 19(16); 4392–403. ©2013 AACR.

Collaboration


Dive into the John F. de Groot's collaboration.

Top Co-Authors

Avatar

Yuji Piao

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

W. K. Alfred Yung

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Mark R. Gilbert

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Howard Colman

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Erik P. Sulman

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Monica Elena Loghin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Charles A. Conrad

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Penas-Prado

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge