Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuji Suehiro is active.

Publication


Featured researches published by Yuji Suehiro.


Science | 2014

A Neural Mechanism Underlying Mating Preferences for Familiar Individuals in Medaka Fish

Teruhiro Okuyama; Saori Yokoi; Hideki Abe; Yasuko Isoe; Yuji Suehiro; Haruka Imada; Minoru Tanaka; Takashi Kawasaki; Shunsuke Yuba; Yoshihito Taniguchi; Yasuhiro Kamei; Kataaki Okubo; Atsuko Shimada; Kiyoshi Naruse; Hiroyuki Takeda; Yoshitaka Oka; Takeo Kubo; Hideaki Takeuchi

Familiarity Does Not Breed Contempt Female mating preference is influenced by social familiarity in various species from fish to primates. Okuyama et al. (p. 91) showed in Japanese rice fish that females prefer to mate with visually familiarized males over unfamiliar males and that this preference is mediated by specific neuromodulatory neurons in the female brain. A particular class of neurons regulates female fish mating preference based on social familiarity. Social familiarity affects mating preference among various vertebrates. Here, we show that visual contact of a potential mating partner before mating (visual familiarization) enhances female preference for the familiarized male, but not for an unfamiliarized male, in medaka fish. Terminal-nerve gonadotropin-releasing hormone 3 (TN-GnRH3) neurons, an extrahypothalamic neuromodulatory system, function as a gate for activating mating preferences based on familiarity. Basal levels of TN-GnRH3 neuronal activity suppress female receptivity for any male (default mode). Visual familiarization facilitates TN-GnRH3 neuron activity (preference mode), which correlates with female preference for the familiarized male. GnRH3 peptides, which are synthesized specifically in TN-GnRH3 neurons, are required for the mode-switching via self-facilitation. Our study demonstrates the central neural mechanisms underlying the regulation of medaka female mating preference based on visual social familiarity.


Science | 2016

Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization

Qinghua Zhou; H. Li; Akihisa Nakagawa; Jason L. J. Lin; Eui-Seung Lee; Brian L. Harry; Riley Robert Skeen-Gaar; Yuji Suehiro; D. William; Shohei Mitani; Hanna S. Yuan; Byung-Ho Kang; Ding Xue

Eliminating paternal mitochondria During fertilization, the oocyte and sperm each bring their mitochondria to the union. Shortly afterward, the paternal mitochondria are degraded, and only the maternal mitochondria are conveyed to the progeny. Zhou et al. observed that the integrity of the inner membrane of paternal mitochondria is compromised, which apparently marks them for degradation (see the Perspective by van der Bliek). Autophagy commences by mitochondrial endonuclease G relocating from the intermembrane space into the matrix and subsequently degrading the paternal mitochondrial DNA. Any delay in this process increases embryonic lethality. Science, this issue p. 394; see also p. 351 A mitochondrial enzyme promotes the destruction and removal of sperm-derived mitochondria in nematode worm embryos. Mitochondria are inherited maternally in most animals, but the mechanisms of selective paternal mitochondrial elimination (PME) are unknown. While examining fertilization in Caenorhabditis elegans, we observed that paternal mitochondria rapidly lose their inner membrane integrity. CPS-6, a mitochondrial endonuclease G, serves as a paternal mitochondrial factor that is critical for PME. We found that CPS-6 relocates from the intermembrane space of paternal mitochondria to the matrix after fertilization to degrade mitochondrial DNA. It acts with maternal autophagy and proteasome machineries to promote PME. Loss of cps-6 delays breakdown of mitochondrial inner membranes, autophagosome enclosure of paternal mitochondria, and PME. Delayed removal of paternal mitochondria causes increased embryonic lethality, demonstrating that PME is important for normal animal development. Thus, CPS-6 functions as a paternal mitochondrial degradation factor during animal development.


Brain Research | 2010

Proliferation zones in adult medaka (Oryzias latipes) brain

Yoshiko Kuroyanagi; Teruhiro Okuyama; Yuji Suehiro; Haruka Imada; Atsuko Shimada; Kiyoshi Naruse; Hiroyuki Takeda; Takeo Kubo; Hideaki Takeuchi

Cell proliferation in the adult mammalian brain is maintained at a low rate, but cell proliferation in the adult fish brain is prominent. To compare the distribution of proliferating cells among fish species, mutants, and under different growing environments, we mapped the zones of cell proliferation in the adult medaka (Oryzias latipes) brain and identified 17 proliferation zones in both male and female brains. These zones were distributed in the telencephalon (4 zones), preoptic area (2 zones), pineal body (1 zone), hypophysis (1 zone), habenular nucleus (1 zone), optic tectum (2 zones), third ventricular zone (1 zone), ventromedial nucleus (1 zone), hypothalamus (1 zone), and cerebellum (3 zones). Of the 17 zones, 16 corresponded to brain regions where cells proliferate in the zebrafish brain, suggesting that the persistence of the generation of new cells, at least in these zones, might be conserved among some fish species. We then compared the distribution of proliferation zones using two body-color mutant medaka, the T5 and Quintet, the latter of which is an albino mutant that completely lacks pigmentation. There was no apparent difference in the distribution pattern among these mutant strains. Finally, we compared these proliferation zones in the brains of isolated- and group-reared fish and detected no significant difference between the two groups. These findings demonstrate that there is persistent cell proliferation in at least these 16 zones of the adult medaka brain, irrespective of sex, body-color, and growth environment, suggesting that proliferation capacity in the 16 zones is maintained robustly in the adult medaka brain.


PLOS ONE | 2010

Coordinated and Cohesive Movement of Two Small Conspecific Fish Induced by Eliciting a Simultaneous Optomotor Response

Haruka Imada; Masahito Hoki; Yuji Suehiro; Teruhiro Okuyama; Daisuke Kurabayashi; Atsuko Shimada; Kiyoshi Naruse; Hiroyuki Takeda; Takeo Kubo; Hideaki Takeuchi

Background In animal groups such as herds, schools, and flocks, a certain distance is maintained between adjacent individuals, allowing them to move as a cohesive unit. Proximate causations of the cohesive and coordinated movement under dynamic conditions, however, have been poorly understood. Methodology/Principal Findings We established a novel and simple behavioral assay using pairs of small fish (medaka and dwarf pufferfish) by eliciting a simultaneous optomotor response (OMR). We demonstrated that two homospecific fish began to move cohesively and maintained a distance of 2 to 4 cm between them when an OMR was elicited simultaneously in the fish. The coordinated and cohesive movement was not exhibited under a static condition. During the cohesive movement, the relative position of the two fish was not stable. Furthermore, adult medaka exhibited the cohesive movement but larvae did not, despite the fact that an OMR could be elicited in larvae, indicating that this ability to coordinate movement develops during maturation. The cohesive movement was detected in homospecific pairs irrespective of body-color, sex, or albino mutation, but was not detected between heterospecific pairs, suggesting that coordinated movement is based on a conspecific interaction. Conclusions/Significance Our findings demonstrate that coordinated behavior between a pair of animals was elicited by a simultaneous OMR in two small fish. This is the first report to demonstrate induction of a schooling-like movement in a pair of fish by an OMR and to investigate the effect of age, sex, body color, and species on coordination between animals under a dynamic condition.


Biochemical and Biophysical Research Communications | 2011

Induction of c-fos transcription in the medaka brain (Oryzias latipes) in response to mating stimuli

Teruhiro Okuyama; Yuji Suehiro; Haruka Imada; Atsuko Shimada; Kiyoshi Naruse; Hiroyuki Takeda; Takeo Kubo; Hideaki Takeuchi

Immediate-early genes (IEGs) are useful for mapping active brain regions in various vertebrates. Here we identified a c-fos homologue gene in medaka and demonstrated that the amounts of c-fos transcripts and proteins in the medaka brain increased in relation to an artificially evoked seizure, suggesting that the homologue gene has the characteristics of IEGs, which are used as markers of neural activity. Next, quantitative reverse-transcription-polymerase chain reaction revealed that female mating behaviors upregulated c-fos transcription in some brain regions including the telencephalon, optic tectum, and cerebellum. In addition, we performed in situ hybridization with a c-fos intron probe to detect the de novo synthesis of c-fos transcripts and confirmed induction of c-fos transcription in these brain regions after mating. This is the first report of IEG induction in response to mating stimuli in teleost fish. Our results indicated that c-fos expression was induced in response to behavioral stimuli in the medaka brain and that medaka c-fos could be a useful marker of neural activity.


PLOS ONE | 2013

Controlled Cre/loxP Site-Specific Recombination in the Developing Brain in Medaka Fish, Oryzias latipes

Teruhiro Okuyama; Yasuko Isoe; Masahito Hoki; Yuji Suehiro; Genki Yamagishi; Kiyoshi Naruse; Masato Kinoshita; Yasuhiro Kamei; Atushi Shimizu; Takeo Kubo; Hideaki Takeuchi

Background Genetic mosaic techniques have been used to visualize and/or genetically modify a neuronal subpopulation within complex neural circuits in various animals. Neural populations available for mosaic analysis, however, are limited in the vertebrate brain. Methodology/Principal Findings To establish methodology to genetically manipulate neural circuits in medaka, we first created two transgenic (Tg) medaka lines, Tg (HSP:Cre) and Tg (HuC:loxP-DsRed-loxP-GFP). We confirmed medaka HuC promoter-derived expression of the reporter gene in juvenile medaka whole brain, and in neuronal precursor cells in the adult brain. We then demonstrated that stochastic recombination can be induced by micro-injection of Cre mRNA into Tg (HuC:loxP-DsRed-loxP-GFP) embryos at the 1-cell stage, which allowed us to visualize some subpopulations of GFP-positive cells in compartmentalized regions of the telencephalon in the adult medaka brain. This finding suggested that the distribution of clonally-related cells derived from single or a few progenitor cells was restricted to a compartmentalized region. Heat treatment of Tg(HSP:Cre x HuC:loxP-DsRed-loxP-GFP) embryos (0–1 day post fertilization [dpf]) in a thermalcycler (39°C) led to Cre/loxP recombination in the whole brain. The recombination efficiency was notably low when using 2–3 dpf embyos compared with 0–1 dpf embryos, indicating the possibility of stage-dependent sensitivity of heat-inducible recombination. Finally, using an infrared laser-evoked gene operator (IR-LEGO) system, heat shock induced in a micro area in the developing brains led to visualization of clonally-related cells in both juvenile and adult medaka fish. Conclusions/Significance We established a noninvasive method to control Cre/loxP site-specific recombination in the developing nervous system in medaka fish. This method will broaden the neural population available for mosaic analyses and allow for lineage tracing of the vertebrate nervous system in both juvenile and adult stages.


General and Comparative Endocrinology | 2009

Mass spectrometric map of neuropeptide expression and analysis of the γ-prepro-tachykinin gene expression in the medaka (Oryzias latipes) brain.

Yuji Suehiro; Akikazu Yasuda; Teruhiro Okuyama; Haruka Imada; Yoshiko Kuroyanagi; Takeo Kubo; Hideaki Takeuchi

Neuropeptides have important roles in modulating behavioral patterns such as social interaction. With the aim to determine the presence of neuropeptides known to be involved in social interaction as well as novel peptides, we used MALDI-TOF/MS to analyze neuropeptide profiles in some medaka brain regions. In the telencephalon, hypothalamus, and pituitary gland, 3, 6, and 10 peaks, respectively, were identified as neuropeptides (Arg-vasotocin [AVT], growth hormone-releasing hormone [GHRH], neuropeptide FF, substance P [SP], somatostatin-1 and -2, melanin-concentrating hormone [MCH], MCH gene-related peptide [Mgrp], melanocyte-stimulating hormone [MSH], corticotropin-like intermediate lobe peptide [CLIP], and beta-endorphin). The neuropeptide profile of telencephalon similar to that of the hypothalamus, but completely different from that of pituitary gland. For the future genetic analysis, we identified cDNAs encoding precursor proteins for the identified peptides. We also detect its expression of gamma-prepro-tachykinin gene encoding a SP precursor protein in both the telencephalon and hypothalamus. Our results indicated that the medaka brain contains some neuropeptides (AVT, SP, and somatostatins) that may be involved in modulating medaka behaviors such as social interaction.


PLOS ONE | 2013

A New Data-Mining Method to Search for Behavioral Properties That Induce Alignment and Their Involvement in Social Learning in Medaka Fish ( Oryzias Latipes )

Takashi Ochiai; Yuji Suehiro; Katsuhiro Nishinari; Takeo Kubo; Hideaki Takeuchi

Background Coordinated movement in social animal groups via social learning facilitates foraging activity. Few studies have examined the behavioral cause-and-effect between group members that mediates this social learning. Methodology/Principal Findings We first established a behavioral paradigm for visual food learning using medaka fish and demonstrated that a single fish can learn to associate a visual cue with a food reward. Grouped medaka fish (6 fish) learn to respond to the visual cue more rapidly than a single fish, indicating that medaka fish undergo social learning. We then established a data-mining method based on Kullback-Leibler divergence (KLD) to search for candidate behaviors that induce alignment and found that high-speed movement of a focal fish tended to induce alignment of the other members locally and transiently under free-swimming conditions without presentation of a visual cue. The high-speed movement of the informed and trained fish during visual cue presentation appeared to facilitate the alignment of naïve fish in response to some visual cues, thereby mediating social learning. Compared with naïve fish, the informed fish had a higher tendency to induce alignment of other naïve fish under free-swimming conditions without visual cue presentation, suggesting the involvement of individual recognition in social learning. Conclusions/Significance Behavioral cause-and-effect studies of the high-speed movement between fish group members will contribute to our understanding of the dynamics of social behaviors. The data-mining method used in the present study is a powerful method to search for candidates factors associated with inter-individual interactions using a dataset for time-series coordinate data of individuals.


Scientific Reports | 2016

Engineering new balancer chromosomes in C. elegans via CRISPR/Cas9.

Satoru Iwata; Sawako Yoshina; Yuji Suehiro; Sayaka Hori; Shohei Mitani

Balancer chromosomes are convenient tools used to maintain lethal mutations in heterozygotes. We established a method for engineering new balancers in C. elegans by using the CRISPR/Cas9 system in a non-homologous end-joining mutant. Our studies will make it easier for researchers to maintain lethal mutations and should provide a path for the development of a system that generates rearrangements at specific sites of interest to model and analyse the mechanisms of action of genes.


PLOS ONE | 2014

Genetic control of startle behavior in medaka fish

Satomi Tsuboko; Tetsuaki Kimura; Minori Shinya; Yuji Suehiro; Teruhiro Okuyama; Atsuko Shimada; Hiroyuki Takeda; Kiyoshi Naruse; Takeo Kubo; Hideaki Takeuchi

Genetic polymorphisms are thought to generate intraspecific behavioral diversities, both within and among populations. The mechanisms underlying genetic control of behavioral properties, however, remain unclear in wild-type vertebrates, including humans. To explore this issue, we used diverse inbred strains of medaka fish (Oryzias latipes) established from the same and different local populations. Medaka exhibit a startle response to a visual stimulus (extinction of illumination) by rapidly bending their bodies (C-start) 20-ms after the stimulus presentation. We measured the rates of the response to repeated stimuli (1-s interval, 40 times) among four inbred strains, HNI-I, HNI-II, HO5, and Hd-rR-II1, and quantified two properties of the startle response: sensitivity (response rate to the first stimulus) and attenuation of the response probability with repeated stimulus presentation. Among the four strains, the greatest differences in these properties were detected between HNI-II and Hd-rR-II1. HNI-II exhibited high sensitivity (approximately 80%) and no attenuation, while Hd-rR-II1 exhibited low sensitivity (approximately 50%) and almost complete attenuation after only five stimulus presentations. Our findings suggested behavioral diversity of the startle response within a local population as well as among different populations. Linkage analysis with F2 progeny between HNI-II and Hd-rR-II1 detected quantitative trait loci (QTL) highly related to attenuation, but not to sensitivity, with a maximum logarithm of odds score of 11.82 on linkage group 16. The three genotypes (homozygous for HNI-II and Hd-rR-II1 alleles, and heterozygous) at the marker nearest the QTL correlated with attenuation. Our findings are the first to suggest that a single genomic region might be sufficient to generate individual differences in startle behavior between wild-type strains. Further identification of genetic polymorphisms that define the behavioral trait will contribute to our understanding of the neural mechanisms underlying behavioral diversity, allowing us to investigate the adaptive significance of intraspecific behavioral polymorphisms of the startle response.

Collaboration


Dive into the Yuji Suehiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shohei Mitani

National Presto Industries

View shared research outputs
Top Co-Authors

Avatar

Sawako Yoshina

Tokyo University of Pharmacy and Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Hideki Abe

Tokyo University of Pharmacy and Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge