Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teruhiro Okuyama is active.

Publication


Featured researches published by Teruhiro Okuyama.


Science | 2016

Ventral CA1 neurons store social memory

Teruhiro Okuyama; Takashi Kitamura; Dheeraj S. Roy; Shigeyoshi Itohara; Susumu Tonegawa

The medial temporal lobe, including the hippocampus, has been implicated in social memory. However, it remains unknown which parts of these brain regions and their circuits hold social memory. Here, we show that ventral hippocampal CA1 (vCA1) neurons of a mouse and their projections to nucleus accumbens (NAc) shell play a necessary and sufficient role in social memory. Both the proportion of activated vCA1 cells and the strength and stability of the responding cells are greater in response to a familiar mouse than to a previously unencountered mouse. Optogenetic reactivation of vCA1 neurons that respond to the familiar mouse enabled memory retrieval and the association of these neurons with unconditioned stimuli. Thus, vCA1 neurons and their NAc shell projections are a component of the storage site of social memory.


Science | 2014

A Neural Mechanism Underlying Mating Preferences for Familiar Individuals in Medaka Fish

Teruhiro Okuyama; Saori Yokoi; Hideki Abe; Yasuko Isoe; Yuji Suehiro; Haruka Imada; Minoru Tanaka; Takashi Kawasaki; Shunsuke Yuba; Yoshihito Taniguchi; Yasuhiro Kamei; Kataaki Okubo; Atsuko Shimada; Kiyoshi Naruse; Hiroyuki Takeda; Yoshitaka Oka; Takeo Kubo; Hideaki Takeuchi

Familiarity Does Not Breed Contempt Female mating preference is influenced by social familiarity in various species from fish to primates. Okuyama et al. (p. 91) showed in Japanese rice fish that females prefer to mate with visually familiarized males over unfamiliar males and that this preference is mediated by specific neuromodulatory neurons in the female brain. A particular class of neurons regulates female fish mating preference based on social familiarity. Social familiarity affects mating preference among various vertebrates. Here, we show that visual contact of a potential mating partner before mating (visual familiarization) enhances female preference for the familiarized male, but not for an unfamiliarized male, in medaka fish. Terminal-nerve gonadotropin-releasing hormone 3 (TN-GnRH3) neurons, an extrahypothalamic neuromodulatory system, function as a gate for activating mating preferences based on familiarity. Basal levels of TN-GnRH3 neuronal activity suppress female receptivity for any male (default mode). Visual familiarization facilitates TN-GnRH3 neuron activity (preference mode), which correlates with female preference for the familiarized male. GnRH3 peptides, which are synthesized specifically in TN-GnRH3 neurons, are required for the mode-switching via self-facilitation. Our study demonstrates the central neural mechanisms underlying the regulation of medaka female mating preference based on visual social familiarity.


Brain Research | 2010

Proliferation zones in adult medaka (Oryzias latipes) brain

Yoshiko Kuroyanagi; Teruhiro Okuyama; Yuji Suehiro; Haruka Imada; Atsuko Shimada; Kiyoshi Naruse; Hiroyuki Takeda; Takeo Kubo; Hideaki Takeuchi

Cell proliferation in the adult mammalian brain is maintained at a low rate, but cell proliferation in the adult fish brain is prominent. To compare the distribution of proliferating cells among fish species, mutants, and under different growing environments, we mapped the zones of cell proliferation in the adult medaka (Oryzias latipes) brain and identified 17 proliferation zones in both male and female brains. These zones were distributed in the telencephalon (4 zones), preoptic area (2 zones), pineal body (1 zone), hypophysis (1 zone), habenular nucleus (1 zone), optic tectum (2 zones), third ventricular zone (1 zone), ventromedial nucleus (1 zone), hypothalamus (1 zone), and cerebellum (3 zones). Of the 17 zones, 16 corresponded to brain regions where cells proliferate in the zebrafish brain, suggesting that the persistence of the generation of new cells, at least in these zones, might be conserved among some fish species. We then compared the distribution of proliferation zones using two body-color mutant medaka, the T5 and Quintet, the latter of which is an albino mutant that completely lacks pigmentation. There was no apparent difference in the distribution pattern among these mutant strains. Finally, we compared these proliferation zones in the brains of isolated- and group-reared fish and detected no significant difference between the two groups. These findings demonstrate that there is persistent cell proliferation in at least these 16 zones of the adult medaka brain, irrespective of sex, body-color, and growth environment, suggesting that proliferation capacity in the 16 zones is maintained robustly in the adult medaka brain.


PLOS ONE | 2010

Coordinated and Cohesive Movement of Two Small Conspecific Fish Induced by Eliciting a Simultaneous Optomotor Response

Haruka Imada; Masahito Hoki; Yuji Suehiro; Teruhiro Okuyama; Daisuke Kurabayashi; Atsuko Shimada; Kiyoshi Naruse; Hiroyuki Takeda; Takeo Kubo; Hideaki Takeuchi

Background In animal groups such as herds, schools, and flocks, a certain distance is maintained between adjacent individuals, allowing them to move as a cohesive unit. Proximate causations of the cohesive and coordinated movement under dynamic conditions, however, have been poorly understood. Methodology/Principal Findings We established a novel and simple behavioral assay using pairs of small fish (medaka and dwarf pufferfish) by eliciting a simultaneous optomotor response (OMR). We demonstrated that two homospecific fish began to move cohesively and maintained a distance of 2 to 4 cm between them when an OMR was elicited simultaneously in the fish. The coordinated and cohesive movement was not exhibited under a static condition. During the cohesive movement, the relative position of the two fish was not stable. Furthermore, adult medaka exhibited the cohesive movement but larvae did not, despite the fact that an OMR could be elicited in larvae, indicating that this ability to coordinate movement develops during maturation. The cohesive movement was detected in homospecific pairs irrespective of body-color, sex, or albino mutation, but was not detected between heterospecific pairs, suggesting that coordinated movement is based on a conspecific interaction. Conclusions/Significance Our findings demonstrate that coordinated behavior between a pair of animals was elicited by a simultaneous OMR in two small fish. This is the first report to demonstrate induction of a schooling-like movement in a pair of fish by an OMR and to investigate the effect of age, sex, body color, and species on coordination between animals under a dynamic condition.


PLOS Genetics | 2015

An Essential Role of the Arginine Vasotocin System in Mate-Guarding Behaviors in Triadic Relationships of Medaka Fish (Oryzias latipes)

Saori Yokoi; Teruhiro Okuyama; Yasuhiro Kamei; Kiyoshi Naruse; Yoshihito Taniguchi; Satoshi Ansai; Masato Kinoshita; Larry J. Young; Nobuaki Takemori; Takeo Kubo; Hideaki Takeuchi

To increase individual male fitness, males of various species remain near a (potential) mating partner and repel their rivals (mate-guarding). Mate-guarding is assumed to be mediated by two different types of motivation: sexual motivation toward the opposite sex and competitive motivation toward the same sex. The genetic/molecular mechanisms underlying how mate presence affects male competitive motivation in a triadic relationship has remained largely unknown. Here we showed that male medaka fish prominently exhibit mate-guarding behavior. The presence of a female robustly triggers male-male competition for the female in a triadic relationship (2 males and 1 female). The male-male competition resulted in one male occupying a dominant position near the female while interfering with the other males approach of the female. Paternity testing revealed that the dominant male had a significantly higher mating success rate than the other male in a triadic relationship. We next generated medaka mutants of arginine-vasotocin (avt) and its receptors (V1a1, V1a2) and revealed that two genes, avt and V1a2, are required for normal mate-guarding behavior. In addition, behavioral analysis of courtship behaviors in a dyadic relationship and aggressive behaviors within a male group revealed that avt mutant males displayed decreased sexual motivation but showed normal aggression. In contrast, heterozygote V1a2 mutant males displayed decreased aggression, but normal mate-guarding and courtship behavior. Thus, impaired mate-guarding in avt and V1a2 homozygote mutants may be due to the loss of sexual motivation toward the opposite sex, and not to the loss of competitive motivation toward rival males. The different behavioral phenotypes between avt, V1a2 heterozygote, and V1a2 homozygote mutants suggest that there are redundant systems to activate V1a2 and that endogenous ligands activating the receptor may differ according to the social context.


Biochemical and Biophysical Research Communications | 2011

Induction of c-fos transcription in the medaka brain (Oryzias latipes) in response to mating stimuli

Teruhiro Okuyama; Yuji Suehiro; Haruka Imada; Atsuko Shimada; Kiyoshi Naruse; Hiroyuki Takeda; Takeo Kubo; Hideaki Takeuchi

Immediate-early genes (IEGs) are useful for mapping active brain regions in various vertebrates. Here we identified a c-fos homologue gene in medaka and demonstrated that the amounts of c-fos transcripts and proteins in the medaka brain increased in relation to an artificially evoked seizure, suggesting that the homologue gene has the characteristics of IEGs, which are used as markers of neural activity. Next, quantitative reverse-transcription-polymerase chain reaction revealed that female mating behaviors upregulated c-fos transcription in some brain regions including the telencephalon, optic tectum, and cerebellum. In addition, we performed in situ hybridization with a c-fos intron probe to detect the de novo synthesis of c-fos transcripts and confirmed induction of c-fos transcription in these brain regions after mating. This is the first report of IEG induction in response to mating stimuli in teleost fish. Our results indicated that c-fos expression was induced in response to behavioral stimuli in the medaka brain and that medaka c-fos could be a useful marker of neural activity.


PLOS ONE | 2013

Controlled Cre/loxP Site-Specific Recombination in the Developing Brain in Medaka Fish, Oryzias latipes

Teruhiro Okuyama; Yasuko Isoe; Masahito Hoki; Yuji Suehiro; Genki Yamagishi; Kiyoshi Naruse; Masato Kinoshita; Yasuhiro Kamei; Atushi Shimizu; Takeo Kubo; Hideaki Takeuchi

Background Genetic mosaic techniques have been used to visualize and/or genetically modify a neuronal subpopulation within complex neural circuits in various animals. Neural populations available for mosaic analysis, however, are limited in the vertebrate brain. Methodology/Principal Findings To establish methodology to genetically manipulate neural circuits in medaka, we first created two transgenic (Tg) medaka lines, Tg (HSP:Cre) and Tg (HuC:loxP-DsRed-loxP-GFP). We confirmed medaka HuC promoter-derived expression of the reporter gene in juvenile medaka whole brain, and in neuronal precursor cells in the adult brain. We then demonstrated that stochastic recombination can be induced by micro-injection of Cre mRNA into Tg (HuC:loxP-DsRed-loxP-GFP) embryos at the 1-cell stage, which allowed us to visualize some subpopulations of GFP-positive cells in compartmentalized regions of the telencephalon in the adult medaka brain. This finding suggested that the distribution of clonally-related cells derived from single or a few progenitor cells was restricted to a compartmentalized region. Heat treatment of Tg(HSP:Cre x HuC:loxP-DsRed-loxP-GFP) embryos (0–1 day post fertilization [dpf]) in a thermalcycler (39°C) led to Cre/loxP recombination in the whole brain. The recombination efficiency was notably low when using 2–3 dpf embyos compared with 0–1 dpf embryos, indicating the possibility of stage-dependent sensitivity of heat-inducible recombination. Finally, using an infrared laser-evoked gene operator (IR-LEGO) system, heat shock induced in a micro area in the developing brains led to visualization of clonally-related cells in both juvenile and adult medaka fish. Conclusions/Significance We established a noninvasive method to control Cre/loxP site-specific recombination in the developing nervous system in medaka fish. This method will broaden the neural population available for mosaic analyses and allow for lineage tracing of the vertebrate nervous system in both juvenile and adult stages.


General and Comparative Endocrinology | 2009

Mass spectrometric map of neuropeptide expression and analysis of the γ-prepro-tachykinin gene expression in the medaka (Oryzias latipes) brain.

Yuji Suehiro; Akikazu Yasuda; Teruhiro Okuyama; Haruka Imada; Yoshiko Kuroyanagi; Takeo Kubo; Hideaki Takeuchi

Neuropeptides have important roles in modulating behavioral patterns such as social interaction. With the aim to determine the presence of neuropeptides known to be involved in social interaction as well as novel peptides, we used MALDI-TOF/MS to analyze neuropeptide profiles in some medaka brain regions. In the telencephalon, hypothalamus, and pituitary gland, 3, 6, and 10 peaks, respectively, were identified as neuropeptides (Arg-vasotocin [AVT], growth hormone-releasing hormone [GHRH], neuropeptide FF, substance P [SP], somatostatin-1 and -2, melanin-concentrating hormone [MCH], MCH gene-related peptide [Mgrp], melanocyte-stimulating hormone [MSH], corticotropin-like intermediate lobe peptide [CLIP], and beta-endorphin). The neuropeptide profile of telencephalon similar to that of the hypothalamus, but completely different from that of pituitary gland. For the future genetic analysis, we identified cDNAs encoding precursor proteins for the identified peptides. We also detect its expression of gamma-prepro-tachykinin gene encoding a SP precursor protein in both the telencephalon and hypothalamus. Our results indicated that the medaka brain contains some neuropeptides (AVT, SP, and somatostatins) that may be involved in modulating medaka behaviors such as social interaction.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context

Akiko Wagatsuma; Teruhiro Okuyama; Chen Sun; Lillian M. Smith; Kuniya Abe; Susumu Tonegawa

Significance The ability to remember a new place is crucial for survival. The locus coeruleus (LC) in the brain stem is known to respond to novel sensory stimuli and can facilitate hippocampus-dependent memory, although the circuit and the role that LC plays in novelty-associated memory is unknown. We performed circuit-specific optogenetic inhibition and found that the hippocampal CA3 subregion is the crucial target of LC projections during the encoding of a novel context. Furthermore, we show with activity-dependent labeling and in vivo calcium imaging that LC inputs are necessary to provide stable neuronal representations of the context. This study provides evidence that LC neuromodulation, especially to the CA3 subregion, plays a crucial role in memory formation of a new context. The memory for a new episode is formed immediately upon experience and can last up to a lifetime. It has been shown that the hippocampal network plays a fundamental role in the rapid acquisition of a memory of a one-time experience, in which the novelty component of the experience promotes the prompt formation of the memory. However, it remains unclear which neural circuits convey the novelty signal to the hippocampus for the single-trial learning. Here, we show that during encoding neuromodulatory input from locus coeruleus (LC) to CA3, but not CA1 or to the dentate gyrus, is necessary to facilitate novel contextual learning. Silencing LC activity during exposure to a novel context reduced subsequent reactivation of the engram cell ensembles in CA3 neurons and in downstream CA1 upon reexposure to the same context. Calcium imaging of the cells reactivated in both novel and familiar contexts revealed that suppression of LC inputs at the time of encoding resulted in more variable place fields in CA3 neurons. These results suggest that neuromodulatory input from LC to CA3 is crucial for the formation of a persistent memory in the hippocampus.


Biochemical and Biophysical Research Communications | 2012

p53 Mutation suppresses adult neurogenesis in medaka fish (Oryzias latipes).

Yasuko Isoe; Teruhiro Okuyama; Yoshihito Taniguchi; Takeo Kubo; Hideaki Takeuchi

Tumor suppressor p53 negatively regulates self-renewal of neural stem cells in the adult murine brain. Here, we report that the p53 null mutation in medaka fish (Oryzias latipes) suppressed neurogenesis in the telencephalon, independent of cell death. By using 5-bromo-29-deoxyuridine (BrdU) immunohistochemistry, we identified 18 proliferation zones in the brains of young medaka fish; in situ hybridization showed that p53 was expressed selectively in at least 12 proliferation zones. We also compared the number of BrdU-positive cells present in the whole telencephalon of wild-type (WT) and p53 mutant fish. Immediately after BrdU exposure, the number of BrdU-positive cells did not differ significantly between them. One week after BrdU-exposure, the BrdU-positive cells migrated from the proliferation zone, which was accompanied by an increased number in the WT brain. In contrast, no significant increase was observed in the p53 mutant brain. Terminal deoxynucleotidyl transferase (dUTP) nick end-labeling revealed that there was no significant difference in the number of apoptotic cells in the telencephalon of p53 mutant and WT medaka, suggesting that the decreased number of BrdU-positive cells in the mutant may be due to the suppression of proliferation rather than the enhancement of neural cell death. These results suggest that p53 positively regulates neurogenesis via cell proliferation.

Collaboration


Dive into the Teruhiro Okuyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge