Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yujuan Dong is active.

Publication


Featured researches published by Yujuan Dong.


Oncogene | 2013

microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis

N Zhang; Xiaoxing Li; Chung-Wah Wu; Yujuan Dong; M Cai; M T S Mok; H Wang; J Chen; S S M Ng; M Chen; J J Y Sung; J Yu

Using microRNA (miRNA) expression array, we identified that miR-7 was deregulated in colorectal cancer (CRC). We studied the biological role and molecular target of miR-7 in CRC. miR-7 was downregulated in six out of seven colon cancer cell lines. Ectopic expression of miR-7 suppressed colon cancer cell proliferation (P<0.05), induced apoptosis (P<0.05) and caused cell-cycle arrest in G1 phase (P<0.05). The tumor suppressive function of miR-7 was further confirmed in nude mice (P<0.05). The 3′-untranslated region (3′UTR) of Yin Yang 1 (YY1) mRNA contains an evolutionarily conserved miR-7 binding site using in silico searches, luciferase reporter assay and western blot analysis confirmed that miR-7 directly bound to YY1 3′UTR to negatively regulate the protein expression of YY1 in colon cancer cell lines HCT116 and LOVO. Intriguingly, knock-down of YY1 in three colon cancer cell lines (HCT116, LOVO and DLD1) consistently suppressed cell proliferation (P<0.01) and induced apoptosis (P<0.01), indicating the opposite functions of miR-7 and YY1 in CRC. Consistent with these data, ectopic expression of YY1 promoted cell growth by increasing proliferation (P<0.01) and suppressing apoptosis (P<0.001). The tumorigenic ability of YY1 was further confirmed in vivo in xenograft-nude mouse model (P<0.01). In addition, pathway analyses revealed that the oncogenic effect by YY1 was associated with inhibiting p53 and modulating its downstream effectors p15, caspase cascades and C-Jun, and activating Wnt signaling pathway through activating β-catenin, anti-apoptotic survivin and fibroblast growth factor 4. Furthermore, multivariate analysis revealed that patients with YY1 protein high expression had a significant decrease in overall survival, and Kaplan–Meier survival curves showed that these patients had significantly shorter survival than others (P<0.0001). In conclusion, MiR-7 is a novel miRNA with tumor suppressive function in colon cancer by targeting oncogenic YY1. YY1 promotes colon cancer growth through inhibiting p53 and promoting Wnt signaling pathways and serves as an independent prognostic biomarker for CRC patients.


Nature Communications | 2015

Gut mucosal microbiome across stages of colorectal carcinogenesis.

Geicho Nakatsu; Xiangchun Li; Haokui Zhou; Jianqiu Sheng; William Ka Kai Wu; Siew C. Ng; Ho Tsoi; Yujuan Dong; Ning Zhang; Yuqi He; Qian Kang; Lei Cao; Kunning Wang; Jingwan Zhang; Qiaoyi Liang; Jun Yu; Joseph J.Y. Sung

Gut microbial dysbiosis contributes to the development of colorectal cancer (CRC). Here we catalogue the microbial communities in human gut mucosae at different stages of colorectal tumorigenesis. We analyse the gut mucosal microbiome of 47 paired samples of adenoma and adenoma-adjacent mucosae, 52 paired samples of carcinoma and carcinoma-adjacent mucosae and 61 healthy controls. Probabilistic partitioning of relative abundance profiles reveals that a metacommunity predominated by members of the oral microbiome is primarily associated with CRC. Analysis of paired samples shows differences in community configurations between lesions and the adjacent mucosae. Correlations of bacterial taxa indicate early signs of dysbiosis in adenoma, and co-exclusive relationships are subsequently more common in cancer. We validate these alterations in CRC-associated microbiome by comparison with two previously published data sets. Our results suggest that a taxonomically defined microbial consortium is implicated in the development of CRC.


Molecular Medicine | 2012

MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating BMI1 polycomb ring finger oncogene.

Xinqi He; Yujuan Dong; Chung Wah Wu; Zengren Zhao; Simon S.M. Ng; Francis K.L. Chan; Joseph J.Y. Sung; Jun Yu

Deregulated miRNAs participate in colorectal carcinogenesis. In this study, miR-218 was found to be downregulated in human colorectal cancer (CRC) by miRNA profile assay. miR-218 was silenced or downregulated in all five colon cancer cells (Caco2, HT29, SW620, HCT116 and LoVo) relative to normal colon tissues. miR-218 expression was significantly lower in 46 CRC tumor tissues compared with their adjacent normal tissues (P < 0.001). Potential target genes of miR-218 were predicted and BMI1 polycomb ring finger oncogene (BMI-1), a polycomb ring finger oncogene, was identified as one of the potential targets. Upregulation of BMI-1 was detected in CRC tumors compared with adjacent normal tissues (P < 0.001) and in all five colon cancer cell lines. Transfection of miR-218 in colon cancer cell lines (HCT116, HT29) significantly reduced luciferase activity of the wild-type construct of BMI-1 3′ untranslated region (3′UTR) (P < 0.001), whereas this effect was not seen in the construct with mutant BMI-1 3′UTR, indicating a direct and specific interaction of miR-218 with BMI-1. Ectopic expression of miR-218 in HCT116 and HT29 cells suppressed BMI-1 mRNA and protein expression. In addition, miR-218 suppressed protein expression of BMI-1 downstream targets of cyclin-dependent kinase 4, a cell cycle regulator, while upregulating protein expression of p53. We further revealed that miR-218 induced apoptosis (P < 0.01), inhibited cell proliferation (P < 0.05) and promoted cell cycle arrest in the G2 phase (P < 0.01). In conclusion, miR-218 plays a pivotal role in CRC development through inhibiting cell proliferation and cycle progression and promoting apoptosis by downregulating BMI-1.


British Journal of Cancer | 2011

MicroRNA dysregulation in colorectal cancer: a clinical perspective

Yujuan Dong; William Ka Kei Wu; Chung-Wah Wu; J J Y Sung; J Yu; Simon Siu Man Ng

Recent researches have shed light on the biological importance of microRNAs (miRNAs) in colorectal cancer (CRC) genesis, progression and response to treatments. The potential utility of miRNAs in the preclinical stage have been explored and investigated. In this review, we explored the literature and reviewed the cutting edge progress in the discovery of noninvasive plasma and faecal miRNAs for CRC early diagnosis, as well as their measurability and predictability. We also discussed the utility of miRNAs as novel prognostic and predictive markers, and their association with CRC clinical phenotypes including recurrence, metastasis and therapeutic outcomes. Finally, we summarised miRNA-related single-nucleotide polymorphisms and their potential influence on sporadic CRC susceptibility and therapeutic response. In conclusion, the use of miRNAs as biomarker for CRC is still in its infancy and need further characterisation and evaluation.


Clinical Cancer Research | 2014

Identification of microRNA-135b in Stool as a Potential Noninvasive Biomarker for Colorectal Cancer and Adenoma

Chung Wah Wu; Siew C. Ng; Yujuan Dong; Linwei Tian; Simon Siu Man Ng; Wing Wa Leung; Wai Tak Law; Tung On Yau; Francis Ka-Leung Chan; Joseph Jao Yiu Sung; Jun Yu

Purpose: Detecting microRNA (miRNA) in stool is a novel approach for colorectal cancer (CRC) screening. This study aimed to identify stool-based miRNA as noninvasive biomarkers for detection of CRC and adenoma. Experimental Design: A miRNA expression array covering 667 human miRNAs was performed on five pairs of CRC and two pairs of advanced adenoma tissues. The most upregulated miRNAs were validated in 40 pairs of CRC tissues, 16 pairs of advanced adenoma tissues, and 424 stool samples, including 104 CRCs, 169 adenomas, 42 inflammatory bowel diseases (IBD), and 109 healthy controls. miRNA levels were followed-up after removal of lesions. Results: In an array analysis, miR-31 and miR-135b were the most upregulated miRNAs in CRC and advanced adenoma as compared with their adjacent normal tissues (>13-fold increase). In stool samples, level of miR-135b was significantly higher in subjects with CRC (P < 0.0001) or adenomas (P < 0.0001), but not in patients with IBD compared with controls. miR-135b showed a significant increasing trend across the adenoma to cancer sequence (P < 0.0001). Levels of miR-31 were not significantly different among groups. The sensitivity of stool mR-135b was 78% for CRC, 73% for advanced adenoma, and 65% for any adenoma, respectively, with a specificity of 68%. No significant difference in the miR-135b level was found between proximal and distal colorectal lesions. Stool miR-135b dropped significantly upon removal of CRC or advanced adenoma (P < 0.0001). Conclusion: Stool-based miR-135b can be used as a noninvasive biomarker for the detection of CRC and advanced adenoma. Clin Cancer Res; 20(11); 2994–3002. ©2014 AACR.


PLOS ONE | 2013

MicroRNA-18a Attenuates DNA Damage Repair through Suppressing the Expression of Ataxia Telangiectasia Mutated in Colorectal Cancer

Chung-Wah Wu; Yujuan Dong; Qiaoyi Liang; Xinqi He; Simon S.M. Ng; Francis K.L. Chan; Joseph J.Y. Sung; Jun Yu

Background miR-18a is one of the most up-regulated miRNAs in colorectal cancers (CRC) based on miRNA profiling. In this study, we examined the functional significance of miR-18a in CRC. Methods Expression of miR-18a was investigated in 45 CRC patients. Potential target genes of miR-18a were predicted by in silico search and confirmed by luciferase activity assay and Western blot. DNA damage was measured by comet assay. Gene function was measured by cell viability, colony formation and apoptosis assays. Results The up-regulation of miR-18a was validated and confirmed in 45 primary CRC tumors compared with adjacent normal tissues (p<0.0001). Through in silico search, the 3′UTR of Ataxia telangiectasia mutated (ATM) contains a conserved miR-18a binding site. Expression of ATM was down-regulated in CRC tumors (p<0.0001) and inversely correlated with miR-18a expression (r = -0.4562, p<0.01). Over-expression of miR-18a in colon cancer cells significantly reduced the luciferase activity of the construct with wild-type ATM 3′UTR but not that with mutant ATM 3′UTR, inferring a direct interaction of miR-18a with ATM 3′UTR. This was further confirmed by the down-regulation of ATM protein by miR-18a. As ATM is a key enzyme in DNA damage repair, we evaluated the effect of miR-18a on DNA double-strand breaks. Ectopic expression of miR-18a significantly inhibited the repair of DNA damage induced by etoposide (p<0.001), leading to accumulation of DNA damage, increase in cell apoptosis and poor clonogenic survival. Conclusion miR-18a attenuates cellular repair of DNA double-strand breaks by directly suppressing ATM, a key enzyme in DNA damage repair.


Molecular Cancer | 2014

microRNA-139-5p exerts tumor suppressor function by targeting NOTCH1 in colorectal cancer

Lijing Zhang; Yujuan Dong; Nana Zhu; Ho Tsoi; Zengren Zhao; Chung Wah Wu; Kunning Wang; Shu Zheng; Simon Sm Ng; Francis K.L. Chan; Joseph J.Y. Sung; Jun Yu

BackgroundmiR-139-5p was identified to be significantly down-regulated in colon tumor tissues by miRNA array. We aimed to clarify its biological function, molecular mechanisms and direct target gene in colorectal cancer (CRC).MethodsThe biological function of miR-139-5p was examined by cell growth, cell cycle and apoptosis analysis in vitro and in vivo. miR-139-5p target gene and signaling pathway was identified by luciferase activity assay and western blot.ResultsmiR-139-5p was significantly down-regulated in primary tumor tissues (P < 0.0001). Ectopic expression of miR-139-5p in colon cancer cell lines significantly suppressed cell growth as evidenced by cell viability assay (P < 0.001) and colony formation assay (P < 0.01) and in xenograft tumor growth in nude mice (P < 0.01). miR-139-5p induced apoptosis (P < 0.01), concomitantly with up-regulation of key apoptosis genes including cleaved caspase-8, caspase-3, caspase-7 and PARP. miR-139-5p also caused cell cycle arrest in G0/G1 phase (P < 0.01), with upregulation of key G0/G1 phase regulators p21Cip1/Waf1 and p27Kip1. Moreover, miR-139-5p inhibited cellular migration (P < 0.001) and invasiveness (P < 0.001) through the inhibition of matrix metalloproteinases (MMP)7 and MMP9. Oncogene NOTCH1 was revealed to be a putative target of miR-139-5p, which was inversely correlated with miR-139-5p expression (r = -0.3862, P = 0.0002).ConclusionsmiR-139-5p plays a pivotal role in colon cancer through inhibiting cell proliferation, metastasis, and promoting apoptosis and cell cycle arrest by targeting oncogenic NOTCH1.


Molecular Cancer | 2015

Targeting of YAP1 by microRNA-15a and microRNA-16-1 exerts tumor suppressor function in gastric adenocarcinoma

Wei Kang; Joanna Hm Tong; Raymond Wm Lung; Yujuan Dong; Junhong Zhao; Qiaoyi Liang; Li Zhang; Yi Pan; Weiqin Yang; Jesse Cs Pang; Alfred Sl Cheng; Jun Yu; Ka Fai To

BackgroundMicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated.MethodsThe expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated.ResultsWe found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression.ConclusionIn conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC.


Molecular Cancer Research | 2013

Tumor suppressor functions of miR-133a in colorectal cancer.

Yujuan Dong; Junhong Zhao; Chung-Wah Wu; Lijing Zhang; Xiaodong Liu; Wei Kang; Wk Leung; Ning Zhang; Francis K.L. Chan; Joseph J.Y. Sung; Simon S.M. Ng; Jun Yu

Dysregulated microRNA (miRNA) expression was profiled through a miRNA array comparison between human colorectal cancer tumors and their adjacent normal tissues. Specifically, using laser capture micro-dissection, miR-133a was shown to be significantly downregulated in primary colorectal cancer specimens compared with matched adjacent normal tissue. Ectopic expression of miR-133a significantly suppressed colorectal cancer cell growth in vitro and in vivo. Cell-cycle analysis revealed that miR-133a induced a G0/G1-phase arrest, concomitant with the upregulation of the key G1-phase regulator p21Cip1. We further revealed that miR-133a markedly increased p53 protein and induced p21Cip1 transcription. Studies in silico revealed that the 3′UTR of the ring finger and FYVE-like domain containing E3-ubiquitin protein ligase (RFFL), which regulates p53 protein, contains an evolutionarily conserved miR-133a binding site. miR-133a repressed RFFL-3′UTR reporter activity and reduced RFFL protein levels, indicating that miR-133a directly bound to RFFL mRNA and inhibited RFFL translation. Moreover, miR-133a sensitized colon cancer cells to doxorubicin and oxaliplatin by enhancing apoptosis and inhibiting cell proliferation. These data add weight to the significance of miR-133a in the development of CRC. Implications: miR-133a serves as a potential tumor suppressor upstream of p53 in colorectal cancer and may sensitize cells to therapeutics. Mol Cancer Res; 11(9); 1051–60. ©2013 AACR.


Cancer management and research | 2014

MicroRNA dysregulation as a prognostic biomarker in colorectal cancer.

Yujuan Dong; Jun Yu; Simon Sm Ng

Colorectal cancer (CRC) is one of the most potentially curable cancers, yet it remains the fourth most common overall cause of cancer death worldwide. The identification of robust molecular prognostic biomarkers can refine the conventional tumor–node–metastasis staging system, avoid understaging of tumor, and help pinpoint patients with early-stage CRC who may benefit from aggressive treatments. Recently, epigenetic studies have provided new molecular evidence to better categorize the CRC subtypes and predict clinical outcomes. In this review, we summarize recent findings concerning the prognostic potential of microRNAs (miRNAs) in CRC. We first discuss the prognostic value of three tissue miRNAs (miR-21-5p, miR-29-3p, miR-148-3p) that have been examined in multiple studies. We also summarize the dysregulation of miRNA processing machinery DICER in CRC and its association with risk for mortality. We also reviewe the potential application of miRNA-associated single-nucleotide polymorphisms as prognostic biomarkers for CRC, especially the miRNA-associated polymorphism in the KRAS gene. Last but not least, we discuss the microsatellite instability-related miRNA candidates. Among all these candidates, miR-21-5p is the most promising prognostic marker, yet further prospective validation studies are required before it can go into clinical usage.

Collaboration


Dive into the Yujuan Dong's collaboration.

Top Co-Authors

Avatar

Jun Yu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Wei Kang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Ka Fai To

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Joseph J.Y. Sung

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Alfred S.L. Cheng

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Yuhang Zhou

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Feng Wu

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Francis K.L. Chan

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Jinglin Zhang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Junhong Zhao

The Chinese University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge