Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuki Hagiwara is active.

Publication


Featured researches published by Yuki Hagiwara.


Computers in Biology and Medicine | 2017

A deep convolutional neural network model to classify heartbeats

U. Rajendra Acharya; Shu Lih Oh; Yuki Hagiwara; Jen Hong Tan; Muhammad Adam; Arkadiusz Gertych; Ru San Tan

The electrocardiogram (ECG) is a standard test used to monitor the activity of the heart. Many cardiac abnormalities will be manifested in the ECG including arrhythmia which is a general term that refers to an abnormal heart rhythm. The basis of arrhythmia diagnosis is the identification of normal versus abnormal individual heart beats, and their correct classification into different diagnoses, based on ECG morphology. Heartbeats can be sub-divided into five categories namely non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beats. It is challenging and time-consuming to distinguish these heartbeats on ECG as these signals are typically corrupted by noise. We developed a 9-layer deep convolutional neural network (CNN) to automatically identify 5 different categories of heartbeats in ECG signals. Our experiment was conducted in original and noise attenuated sets of ECG signals derived from a publicly available database. This set was artificially augmented to even out the number of instances the 5 classes of heartbeats and filtered to remove high-frequency noise. The CNN was trained using the augmented data and achieved an accuracy of 94.03% and 93.47% in the diagnostic classification of heartbeats in original and noise free ECGs, respectively. When the CNN was trained with highly imbalanced data (original dataset), the accuracy of the CNN reduced to 89.07%% and 89.3% in noisy and noise-free ECGs. When properly trained, the proposed CNN model can serve as a tool for screening of ECG to quickly identify different types and frequency of arrhythmic heartbeats.


Computers in Biology and Medicine | 2017

Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals

U. Rajendra Acharya; Shu Lih Oh; Yuki Hagiwara; Jen Hong Tan; Hojjat Adeli

An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.


Computers in Biology and Medicine | 2016

Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index

U. Rajendra Acharya; Muthu Rama Krishnan Mookiah; Joel E.W. Koh; Jen Hong Tan; Sulatha V. Bhandary; A. Krishna Rao; Hamido Fujita; Yuki Hagiwara; Chua Kuang Chua; Augustinus Laude

Posterior Segment Eye Diseases (PSED) namely Diabetic Retinopathy (DR), glaucoma and Age-related Macular Degeneration (AMD) are the prime causes of vision loss globally. Vision loss can be prevented, if these diseases are detected at an early stage. Structural abnormalities such as changes in cup-to-disc ratio, Hard Exudates (HE), drusen, Microaneurysms (MA), Cotton Wool Spots (CWS), Haemorrhages (HA), Geographic Atrophy (GA) and Choroidal Neovascularization (CNV) in PSED can be identified by manual examination of fundus images by clinicians. However, manual screening is labour-intensive, tiresome and time consuming. Hence, there is a need to automate the eye screening. In this work Bi-dimensional Empirical Mode Decomposition (BEMD) technique is used to decompose fundus images into 2D Intrinsic Mode Functions (IMFs) to capture variations in the pixels due to morphological changes. Further, various entropy namely Renyi, Fuzzy, Shannon, Vajda, Kapur and Yager and energy features are extracted from IMFs. These extracted features are ranked using Chernoff Bound and Bhattacharyya Distance (CBBD), Kullback-Leibler Divergence (KLD), Fuzzy-minimum Redundancy Maximum Relevance (FmRMR), Wilcoxon, Receiver Operating Characteristics Curve (ROC) and t-test methods. Further, these ranked features are fed to Support Vector Machine (SVM) classifier to classify normal and abnormal (DR, AMD and glaucoma) classes. The performance of the proposed eye screening system is evaluated using 800 (Normal=400 and Abnormal=400) digital fundus images and 10-fold cross validation method. Our proposed system automatically identifies normal and abnormal classes with an average accuracy of 88.63%, sensitivity of 86.25% and specificity of 91% using 17 optimal features ranked using CBBD and SVM-Radial Basis Function (RBF) classifier. Moreover, a novel Retinal Risk Index (RRI) is developed using two significant features to distinguish two classes using single number. Such a system helps to reduce eye screening time in polyclinics or community-based mass screening. They will refer the patients to main hospitals only if the diagnosis belong to the abnormal class. Hence, the main hospitals will not be unnecessarily crowded and doctors can devote their time for other urgent cases.


Computers in Biology and Medicine | 2016

Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images

U. Rajendra Acharya; U. Raghavendra; Hamido Fujita; Yuki Hagiwara; Joel E.W. Koh; Tan Jen Hong; K. Vidya Sudarshan; Anushya Vijayananthan; Chai Hong Yeong; Anjan Gudigar; Kwan-Hoong Ng

Fatty liver disease (FLD) is reversible disease and can be treated, if it is identified at an early stage. However, if diagnosed at the later stage, it can progress to an advanced liver disease such as cirrhosis which may ultimately lead to death. Therefore, it is essential to detect it at an early stage before the disease progresses to an irreversible stage. Several non-invasive computer-aided techniques are proposed to assist in the early detection of FLD and cirrhosis using ultrasound images. In this work, we are proposing an algorithm to discriminate automatically the normal, FLD and cirrhosis ultrasound images using curvelet transform (CT) method. Higher order spectra (HOS) bispectrum, HOS phase, fuzzy, Kapoor, max, Renyi, Shannon, Vajda and Yager entropies are extracted from CT coefficients. These extracted features are subjected to locality sensitive discriminant analysis (LSDA) feature reduction method. Then these LSDA coefficients ranked based on F-value are fed to different classifiers to choose the best performing classifier using minimum number of features. Our proposed technique can characterize normal, FLD and cirrhosis using probabilistic neural network (PNN) classifier with an accuracy of 97.33%, specificity of 100.00% and sensitivity of 96.00% using only six features. In addition, these chosen features are used to develop a liver disease index (LDI) to differentiate the normal, FLD and cirrhosis classes using a single number. This can significantly help the radiologists to discriminate FLD and cirrhosis in their routine liver screening.


Computers in Biology and Medicine | 2016

Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features

U. Rajendra Acharya; Muthu Rama Krishnan Mookiah; Joel E.W. Koh; Jen Hong Tan; Kevin Noronha; Sulatha V. Bhandary; A. Krishna Rao; Yuki Hagiwara; Chua Kuang Chua; Augustinus Laude

Age-related Macular Degeneration (AMD) affects the central vision of aged people. It can be diagnosed due to the presence of drusen, Geographic Atrophy (GA) and Choroidal Neovascularization (CNV) in the fundus images. It is labor intensive and time-consuming for the ophthalmologists to screen these images. An automated digital fundus photography based screening system can overcome these drawbacks. Such a safe, non-contact and cost-effective platform can be used as a screening system for dry AMD. In this paper, we are proposing a novel algorithm using Radon Transform (RT), Discrete Wavelet Transform (DWT) coupled with Locality Sensitive Discriminant Analysis (LSDA) for automated diagnosis of AMD. First the image is subjected to RT followed by DWT. The extracted features are subjected to dimension reduction using LSDA and ranked using t-test. The performance of various supervised classifiers namely Decision Tree (DT), Support Vector Machine (SVM), Probabilistic Neural Network (PNN) and k-Nearest Neighbor (k-NN) are compared to automatically discriminate to normal and AMD classes using ranked LSDA components. The proposed approach is evaluated using private and public datasets such as ARIA and STARE. The highest classification accuracy of 99.49%, 96.89% and 100% are reported for private, ARIA and STARE datasets. Also, AMD index is devised using two LSDA components to distinguish two classes accurately. Hence, this proposed system can be extended for mass AMD screening.


Computers in Biology and Medicine | 2017

Automated diabetic macular edema (DME) grading system using DWT, DCT Features and maculopathy index

U. Rajendra Acharya; Muthu Rama Krishnan Mookiah; Joel E.W. Koh; Jen Hong Tan; Sulatha V. Bhandary; A. Krishna Rao; Yuki Hagiwara; Chua Kuang Chua; Augustinus Laude

The cause of diabetic macular edema (DME) is due to prolonged and uncontrolled diabetes mellitus (DM) which affects the vision of diabetic subjects. DME is graded based on the exudate location from the macula. It is clinically diagnosed using fundus images which is tedious and time-consuming. Regular eye screening and subsequent treatment may prevent the vision loss. Hence, in this work, a hybrid system based on Radon transform (RT), discrete wavelet transform (DWT) and discrete cosine transform (DCT) are proposed for an automated detection of DME. The fundus images are subjected to RT to obtain sinograms and DWT is applied on these sinograms to extract wavelet coefficients (approximate, horizontal, vertical and diagonal). DCT is applied on approximate coefficients to obtain 2D-DCT coefficients. Further, these coefficients are converted into 1D vector by arranging the coefficients in zig-zag manner. This 1D signal is subjected to locality sensitive discriminant analysis (LSDA). Finally, various supervised classifiers are used to classify the three classes using significant features. Our proposed technique yielded a classification accuracy of 100% and 97.01% using two and seven significant features for private and public (MESSIDOR) databases respectively. Also, a maculopathy index is formulated with two significant parameters to discriminate the three groups distinctly using a single integer. Hence, our obtained results suggest that this system can be used as an eye screening tool for diabetic subjects for DME.


Computer Methods and Programs in Biomedicine | 2018

Deep learning for healthcare applications based on physiological signals: A review

Oliver Faust; Yuki Hagiwara; Tan Jen Hong; Oh Shu Lih; U. Rajendra Acharya

BACKGROUND AND OBJECTIVE We have cast the net into the ocean of knowledge to retrieve the latest scientific research on deep learning methods for physiological signals. We found 53 research papers on this topic, published from 01.01.2008 to 31.12.2017. METHODS An initial bibliometric analysis shows that the reviewed papers focused on Electromyogram(EMG), Electroencephalogram(EEG), Electrocardiogram(ECG), and Electrooculogram(EOG). These four categories were used to structure the subsequent content review. RESULTS During the content review, we understood that deep learning performs better for big and varied datasets than classic analysis and machine classification methods. Deep learning algorithms try to develop the model by using all the available input. CONCLUSIONS This review paper depicts the application of various deep learning algorithms used till recently, but in future it will be used for more healthcare areas to improve the quality of diagnosis.


Computers in Biology and Medicine | 2018

Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals

Jen Hong Tan; Yuki Hagiwara; Winnie Pang; Ivy Lim; Shu Lih Oh; Muhammad Adam; Ru San Tan; Ming Chen; U. Rajendra Acharya

Coronary artery disease (CAD) is the most common cause of heart disease globally. This is because there is no symptom exhibited in its initial phase until the disease progresses to an advanced stage. The electrocardiogram (ECG) is a widely accessible diagnostic tool to diagnose CAD that captures abnormal activity of the heart. However, it lacks diagnostic sensitivity. One reason is that, it is very challenging to visually interpret the ECG signal due to its very low amplitude. Hence, identification of abnormal ECG morphology by clinicians may be prone to error. Thus, it is essential to develop a software which can provide an automated and objective interpretation of the ECG signal. This paper proposes the implementation of long short-term memory (LSTM) network with convolutional neural network (CNN) to automatically diagnose CAD ECG signals accurately. Our proposed deep learning model is able to detect CAD ECG signals with a diagnostic accuracy of 99.85% with blindfold strategy. The developed prototype model is ready to be tested with an appropriate huge database before the clinical usage.


Computers in Biology and Medicine | 2017

Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies

Joel E.W. Koh; U. Rajendra Acharya; Yuki Hagiwara; U. Raghavendra; Jen Hong Tan; S. Vinitha Sree; Sulatha V. Bhandary; A. Krishna Rao; Sobha Sivaprasad; Kuang Chua Chua; Augustinus Laude; Louis Tong

Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals.


Ultrasonics | 2017

Fusion of spatial gray level dependency and fractal texture features for the characterization of thyroid lesions

U. Raghavendra; U. Rajendra Acharya; Anjan Gudigar; Jen Hong Tan; Hamido Fujita; Yuki Hagiwara; Filippo Molinari; Pailin Kongmebhol; Kwan-Hoong Ng

&NA; Thyroid is a small gland situated at the anterior side of the neck and one of the largest glands of the endocrine system. The abrupt cell growth or malignancy in the thyroid gland may cause thyroid cancer. Ultrasound images distinctly represent benign and malignant lesions, but accuracy may be poor due to subjective interpretation. Computer Aided Diagnosis (CAD) can minimize the errors created due to subjective interpretation and assists to make fast accurate diagnosis. In this work, fusion of Spatial Gray Level Dependence Features (SGLDF) and fractal textures are used to decipher the intrinsic structure of benign and malignant thyroid lesions. These features are subjected to graph based Marginal Fisher Analysis (MFA) to reduce the number of features. The reduced features are subjected to various ranking methods and classifiers. We have achieved an average accuracy, sensitivity and specificity of 97.52%, 90.32% and 98.57% respectively using Support Vector Machine (SVM) classifier. The achieved maximum Area Under Curve (AUC) is 0.9445. Finally, Thyroid Clinical Risk Index (TCRI) a single number is developed using two MFA features to discriminate the two classes. This prototype system is ready to be tested with huge diverse database. HighlightsAutomated system for classification of benign and malignant thyroid lesions.SGLDF and fractal textures are coupled with MFA is used.242 ultrasound images are used for the study.Classification accuracy of 97.52% is obtained using SVM classifier.Formulated TCRI to discriminate the two classes using one integer.

Collaboration


Dive into the Yuki Hagiwara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamido Fujita

Iwate Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Ru San Tan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

U. Raghavendra

Manipal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

E. Y. K. Ng

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge