Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuki Moriya is active.

Publication


Featured researches published by Yuki Moriya.


Nucleic Acids Research | 2007

KAAS: an automatic genome annotation and pathway reconstruction server

Yuki Moriya; Masumi Itoh; Shujiro Okuda; Akiyasu C. Yoshizawa; Minoru Kanehisa

The number of complete and draft genomes is rapidly growing in recent years, and it has become increasingly important to automate the identification of functional properties and biological roles of genes in these genomes. In the KEGG database, genes in complete genomes are annotated with the KEGG orthology (KO) identifiers, or the K numbers, based on the best hit information using Smith-Waterman scores as well as by the manual curation. Each K number represents an ortholog group of genes, and it is directly linked to an object in the KEGG pathway map or the BRITE functional hierarchy. Here, we have developed a web-based server called KAAS (KEGG Automatic Annotation Server: http://www.genome.jp/kegg/kaas/) i.e. an implementation of a rapid method to automatically assign K numbers to genes in the genome, enabling reconstruction of KEGG pathways and BRITE hierarchies. The method is based on sequence similarities, bi-directional best hit information and some heuristics, and has achieved a high degree of accuracy when compared with the manually curated KEGG GENES database.The number of complete and draft genomes is rapidly growing in recent years, and it has become increasingly important to automate the identification of functional properties and biological roles of genes in these genomes. In the KEGG database, genes in complete genomes are annotated with the KEGG orthology (KO) identifiers, or the K numbers, based on the best hit information using Smith–Waterman scores as well as by the manual curation. Each K number represents an ortholog group of genes, and it is directly linked to an object in the KEGG pathway map or the BRITE functional hierarchy. Here, we have developed a web-based server called KAAS (KEGG Automatic Annotation Server: http://www.genome.jp/kegg/kaas/) i.e. an implementation of a rapid method to automatically assign K numbers to genes in the genome, enabling reconstruction of KEGG pathways and BRITE hierarchies. The method is based on sequence similarities, bi-directional best hit information and some heuristics, and has achieved a high degree of accuracy when compared with the manually curated KEGG GENES database.


Nucleic Acids Research | 2006

EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments.

Ali Masoudi-Nejad; Koichiro Tonomura; Shuichi Kawashima; Yuki Moriya; Masanori Suzuki; Masumi Itoh; Minoru Kanehisa; Takashi R. Endo; Susumu Goto

Expressed sequence tag (EST) sequencing has proven to be an economically feasible alternative for gene discovery in species lacking a draft genome sequence. Ongoing large-scale EST sequencing projects feel the need for bioinformatics tools to facilitate uniform EST handling. This brings about a renewed importance for a universal tool for processing and functional annotation of large sets of ESTs. EGassembler () is a web server, which provides an automated as well as a user-customized analysis tool for cleaning, repeat masking, vector trimming, organelle masking, clustering and assembling of ESTs and genomic fragments. The web server is publicly available and provides the community a unique all-in-one online application web service for large-scale ESTs and genomic DNA clustering and assembling. Running on a Sun Fire 15K supercomputer, a significantly large volume of data can be processed in a short period of time. The results can be used to functionally annotate genes, to facilitate splice alignment analysis, to link the transcripts to genetic and physical maps, design microarray chips, to perform transcriptome analysis and to map to KEGG metabolic pathways. The service provides an excellent bioinformatics tool to research groups in wet-lab as well as an all-in-one-tool for sequence handling to bioinformatics researchers.


Nucleic Acids Research | 2010

PathPred: an enzyme-catalyzed metabolic pathway prediction server

Yuki Moriya; Daichi Shigemizu; Masahiro Hattori; Toshiaki Tokimatsu; Masaaki Kotera; Susumu Goto; Minoru Kanehisa

The KEGG RPAIR database is a collection of biochemical structure transformation patterns, called RDM patterns, and chemical structure alignments of substrate-product pairs (reactant pairs) in all known enzyme-catalyzed reactions taken from the Enzyme Nomenclature and the KEGG PATHWAY database. Here, we present PathPred (http://www.genome.jp/tools/pathpred/), a web-based server to predict plausible pathways of muti-step reactions starting from a query compound, based on the local RDM pattern match and the global chemical structure alignment against the reactant pair library. In this server, we focus on predicting pathways for microbial biodegradation of environmental compounds and biosynthesis of plant secondary metabolites, which correspond to characteristic RDM patterns in 947 and 1397 reactant pairs, respectively. The server provides transformed compounds and reference transformation patterns in each predicted reaction, and displays all predicted multi-step reaction pathways in a tree-shaped graph.


Nucleic Acids Research | 2012

KEGG OC: a large-scale automatic construction of taxonomy-based ortholog clusters

Akihiro Nakaya; Toshiaki Katayama; Masumi Itoh; Kazushi Hiranuka; Shuichi Kawashima; Yuki Moriya; Shujiro Okuda; Michihiro Tanaka; Toshiaki Tokimatsu; Yoshihiro Yamanishi; Akiyasu C. Yoshizawa; Minoru Kanehisa; Susumu Goto

The identification of orthologous genes in an increasing number of fully sequenced genomes is a challenging issue in recent genome science. Here we present KEGG OC (http://www.genome.jp/tools/oc/), a novel database of ortholog clusters (OCs). The current version of KEGG OC contains 1 176 030 OCs, obtained by clustering 8 357 175 genes in 2112 complete genomes (153 eukaryotes, 1830 bacteria and 129 archaea). The OCs were constructed by applying the quasi-clique-based clustering method to all possible protein coding genes in all complete genomes, based on their amino acid sequence similarities. It is computationally efficient to calculate OCs, which enables to regularly update the contents. KEGG OC has the following two features: (i) It consists of all complete genomes of a wide variety of organisms from three domains of life, and the number of organisms is the largest among the existing databases; and (ii) It is compatible with the KEGG database by sharing the same sets of genes and identifiers, which leads to seamless integration of OCs with useful components in KEGG such as biological pathways, pathway modules, functional hierarchy, diseases and drugs. The KEGG OC resources are accessible via OC Viewer that provides an interactive visualization of OCs at different taxonomic levels.


Nucleic Acids Research | 2014

DINIES: drug–target interaction network inference engine based on supervised analysis

Yoshihiro Yamanishi; Masaaki Kotera; Yuki Moriya; Ryusuke Sawada; Minoru Kanehisa; Susumu Goto

DINIES (drug–target interaction network inference engine based on supervised analysis) is a web server for predicting unknown drug–target interaction networks from various types of biological data (e.g. chemical structures, drug side effects, amino acid sequences and protein domains) in the framework of supervised network inference. The originality of DINIES lies in prediction with state-of-the-art machine learning methods, in the integration of heterogeneous biological data and in compatibility with the KEGG database. The DINIES server accepts any ‘profiles’ or precalculated similarity matrices (or ‘kernels’) of drugs and target proteins in tab-delimited file format. When a training data set is submitted to learn a predictive model, users can select either known interaction information in the KEGG DRUG database or their own interaction data. The user can also select an algorithm for supervised network inference, select various parameters in the method and specify weights for heterogeneous data integration. The server can provide integrative analyses with useful components in KEGG, such as biological pathways, functional hierarchy and human diseases. DINIES (http://www.genome.jp/tools/dinies/) is publicly available as one of the genome analysis tools in GenomeNet.


Traffic | 2006

Extracting sequence motifs and the phylogenetic features of SNARE-dependent membrane traffic.

Akiyasu C. Yoshizawa; Shuichi Kawashima; Shujiro Okuda; Masashi Fujita; Masumi Itoh; Yuki Moriya; Masahiro Hattori; Minoru Kanehisa

The SNARE proteins are required for membrane fusion during intracellular vesicular transport and for its specificity. Only the unique combination of SNARE proteins (cognates) can be bound and can lead to membrane fusion, although the characteristics of the possible specificity of the binding combinations encoded in the SNARE sequences have not yet been determined. We discovered by whole genome sequence analysis that sequence motifs (conserved sequences) in the SNARE motif domains for each protein group correspond to localization sites or transport pathways. We claim that these motifs reflect the specificity of the binding combinations of SNARE motif domains. Using these motifs, we could classify SNARE proteins from 48 organisms into their localization sites or transport pathways. The classification result shows that more than 10 SNARE subgroups are kingdom specific and that the SNARE paralogs involved in the plasma membrane‐related transport pathways have developed greater variations in higher animals and higher plants than those involved in the endoplasmic reticulum‐related transport pathways throughout eukaryotic evolution.


Nucleic Acids Research | 2017

jPOSTrepo: an international standard data repository for proteomes

Shujiro Okuda; Yu Watanabe; Yuki Moriya; Shin Kawano; Tadashi Yamamoto; Masaki Matsumoto; Tomoyo Takami; Daiki Kobayashi; Norie Araki; Akiyasu C. Yoshizawa; Tsuyoshi Tabata; Naoyuki Sugiyama; Susumu Goto; Yasushi Ishihama

Major advancements have recently been made in mass spectrometry-based proteomics, yielding an increasing number of datasets from various proteomics projects worldwide. In order to facilitate the sharing and reuse of promising datasets, it is important to construct appropriate, high-quality public data repositories. jPOSTrepo (https://repository.jpostdb.org/) has successfully implemented several unique features, including high-speed file uploading, flexible file management and easy-to-use interfaces. This repository has been launched as a public repository containing various proteomic datasets and is available for researchers worldwide. In addition, our repository has joined the ProteomeXchange consortium, which includes the most popular public repositories such as PRIDE in Europe for MS/MS datasets and PASSEL for SRM datasets in the USA. Later MassIVE was introduced in the USA and accepted into the ProteomeXchange, as was our repository in July 2016, providing important datasets from Asia/Oceania. Accordingly, this repository thus contributes to a global alliance to share and store all datasets from a wide variety of proteomics experiments. Thus, the repository is expected to become a major repository, particularly for data collected in the Asia/Oceania region.


Nucleic Acids Research | 2012

GENIES: gene network inference engine based on supervised analysis

Masaaki Kotera; Yoshihiro Yamanishi; Yuki Moriya; Minoru Kanehisa; Susumu Goto

Gene network inference engine based on supervised analysis (GENIES) is a web server to predict unknown part of gene network from various types of genome-wide data in the framework of supervised network inference. The originality of GENIES lies in the construction of a predictive model using partially known network information and in the integration of heterogeneous data with kernel methods. The GENIES server accepts any ‘profiles’ of genes or proteins (e.g. gene expression profiles, protein subcellular localization profiles and phylogenetic profiles) or pre-calculated gene–gene similarity matrices (or ‘kernels’) in the tab-delimited file format. As a training data set to learn a predictive model, the users can choose either known molecular network information in the KEGG PATHWAY database or their own gene network data. The user can also select an algorithm of supervised network inference, choose various parameters in the method, and control the weights of heterogeneous data integration. The server provides the list of newly predicted gene pairs, maps the predicted gene pairs onto the associated pathway diagrams in KEGG PATHWAY and indicates candidate genes for missing enzymes in organism-specific metabolic pathways. GENIES (http://www.genome.jp/tools/genies/) is publicly available as one of the genome analysis tools in GenomeNet.


Plant Physiology | 2007

EGENES: Transcriptome-Based Plant Database of Genes with Metabolic Pathway Information and Expressed Sequence Tag Indices in KEGG

Ali Masoudi-Nejad; Susumu Goto; Ruy Jauregui; Masumi Ito; Shuichi Kawashima; Yuki Moriya; Takashi R. Endo; Minoru Kanehisa

EGENES is a knowledge-based database for efficient analysis of plant expressed sequence tags (ESTs) that was recently added to the KEGG suite of databases. It links plant genomic information with higher order functional information in a single database. It also provides gene indices for each genome. The genomic information in EGENES is a collection of EST contigs constructed from assembly of ESTs. Due to the extremely large genomes of plant species, the bulk collection of data such as ESTs is a quick way to capture a complete repertoire of genes expressed in an organism. Using ESTs for reconstructing metabolic pathways is a new expansion in KEGG and provides researchers with a new resource for species in which only EST sequences are available. Functional annotation in EGENES is a process of linking a set of genes/transcripts in each genome with a network of interacting molecules in the cell. EGENES is a multispecies, integrated resource consisting of genomic, chemical, and network information containing a complete set of building blocks (genes and molecules) and wiring diagrams (biological pathways) to represent cellular functions. Using EGENES, genome-based pathway annotation and EST-based annotation can now be compared and mutually validated. The ultimate goals of EGENES will be to: bring new plant species into KEGG by clustering and annotating ESTs; abstract knowledge and principles from large-scale plant EST data; and improve computational prediction of systems of higher complexity. EGENES will be updated at least once a year. EGENES is publicly available and is accessible by the following link or by KEGGs navigation system (http://www.genome.jp/kegg-bin/create_kegg_menu?category=plants_egenes).


BMC Genomics | 2012

Evaluation method for the potential functionome harbored in the genome and metagenome

Hideto Takami; Takeaki Taniguchi; Yuki Moriya; Tomomi Kuwahara; Minoru Kanehisa; Susumu Goto

BackgroundOne of the main goals of genomic analysis is to elucidate the comprehensive functions (functionome) in individual organisms or a whole community in various environments. However, a standard evaluation method for discerning the functional potentials harbored within the genome or metagenome has not yet been established. We have developed a new evaluation method for the potential functionome, based on the completion ratio of Kyoto Encyclopedia of Genes and Genomes (KEGG) functional modules.ResultsDistribution of the completion ratio of the KEGG functional modules in 768 prokaryotic species varied greatly with the kind of module, and all modules primarily fell into 4 patterns (universal, restricted, diversified and non-prokaryotic modules), indicating the universal and unique nature of each module, and also the versatility of the KEGG Orthology (KO) identifiers mapped to each one. The module completion ratio in 8 phenotypically different bacilli revealed that some modules were shared only in phenotypically similar species. Metagenomes of human gut microbiomes from 13 healthy individuals previously determined by the Sanger method were analyzed based on the module completion ratio. Results led to new discoveries in the nutritional preferences of gut microbes, believed to be one of the mutualistic representations of gut microbiomes to avoid nutritional competition with the host.ConclusionsThe method developed in this study could characterize the functionome harbored in genomes and metagenomes. As this method also provided taxonomical information from KEGG modules as well as the gene hosts constructing the modules, interpretation of completion profiles was simplified and we could identify the complementarity between biochemical functions in human hosts and the nutritional preferences in human gut microbiomes. Thus, our method has the potential to be a powerful tool for comparative functional analysis in genomics and metagenomics, able to target unknown environments containing various uncultivable microbes within unidentified phyla.

Collaboration


Dive into the Yuki Moriya's collaboration.

Top Co-Authors

Avatar

Susumu Goto

Institute for Creation Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge