Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuki Nakanishi is active.

Publication


Featured researches published by Yuki Nakanishi.


Nature Genetics | 2013

Dclk1 distinguishes between tumor and normal stem cells in the intestine

Yuki Nakanishi; Hiroshi Seno; Ayumi Fukuoka; Taro Ueo; Yuichi Yamaga; Takahisa Maruno; Naoko Nakanishi; Keitaro Kanda; Hideyuki Komekado; Mayumi Kawada; Akihiro Isomura; Kenji Kawada; Yoshiharu Sakai; Motoko Yanagita; Ryoichiro Kageyama; Yoshiya Kawaguchi; Makoto M. Taketo; Shin Yonehara; Tsutomu Chiba

There is great interest in tumor stem cells (TSCs) as potential therapeutic targets; however, cancer therapies targeting TSCs are limited. A drawback is that TSC markers are often shared by normal stem cells (NSCs); thus, therapies that target these markers may cause severe injury to normal tissues. To identify a potential TSC-specific marker, we focused on doublecortin-like kinase 1 (Dclk1). Dclk1 was reported as a candidate NSC marker in the gut, but recent reports have implicated it as a marker of differentiated cells (for example, Tuft cells). Using lineage-tracing experiments, we show here that Dclk1 does not mark NSCs in the intestine but instead marks TSCs that continuously produce tumor progeny in the polyps of ApcMin/+ mice. Specific ablation of Dclk1-positive TSCs resulted in a marked regression of polyps without apparent damage to the normal intestine. Our data suggest the potential for developing a therapy for colorectal cancer based on targeting Dclk1-positive TSCs.


Carcinogenesis | 2011

COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps

Yuki Nakanishi; Masato Nakatsuji; Hiroshi Seno; Shoko Ishizu; Reiko Akitake-Kawano; Keitaro Kanda; Taro Ueo; Hideyuki Komekado; Mayumi Kawada; Manabu Minami; Tsutomu Chiba

Macrophages are a major component of tumor stroma. Tumor-associated macrophages (TAMs) show anti- (M1) or protumor (M2) functions depending on the cytokine milieu of the tumor microenvironment. Cyclooxygenase-2 (COX-2) is constitutively expressed in a variety of tumors including colorectal cancer. TAMs are known to be a major source of COX-2 in human and mice intestinal tumors. COX-2 inhibitor reduces the number and size of intestinal adenomas in familial adenomatous polyposis patients and Apc(Min/+) mice. Although COX-2 inhibitor is thought to regulate cancer-related inflammation, its effect on TAM phenotype remains unknown. Here, we examined the effects of COX-2 inhibition on TAM phenotype and cytokine expression both in vivo and in vitro. Firstly, the selective COX-2 inhibitor celecoxib changed the TAM phenotype from M2 to M1, in proportion to the reduction in number of Apc(Min/+) mouse polyps. Concomitantly, the expression of M1-related cytokine interfron (IFN)-γ was significantly upregulated by celecoxib, although the M2-related cytokines interleukin (IL)-4, IL-13 and IL-10 were not significantly altered. Secondly, IFN-γ treatment attenuated M2 phenotype of mouse peritoneal macrophages and oriented them to M1 even in the presence of M2-polarizing cytokines such as IL-4, IL-13 and IL-10. Thus, our results suggest that COX-2 inhibition alters TAM phenotype in an IFN-γ-dependent manner and subsequently may reduce intestinal tumor progression.


Oncogene | 2012

Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer.

Mayumi Kawada; Hiroshi Seno; Keitaro Kanda; Yuki Nakanishi; Reiko Akitake; Hideyuki Komekado; Kenji Kawada; Yoshiharu Sakai; Emiko Mizoguchi; Tsutomu Chiba

Chitinase 3-like 1 (CHI3L1), one of the mammalian members of the chitinase family, is expressed in several types of human cancer, and elevated serum level of CHI3L1 is suggested to be a biomarker of poor prognosis in advanced cancer patients. However, the overall biological function of CHI3L1 in human cancers still remains unknown. Studies were performed to characterize the role of CHI3L1 in cancer pathophysiology utilizing human colorectal cancer samples and human cell lines. Plasma protein and tissue mRNA expression levels of CHI3L1 in colorectal cancer were strongly upregulated. Immunohistochemical analysis showed that CHI3L1 was expressed in cancer cells, and CHI3L1 expression had a significant association with the number of infiltrated macrophages and microvessel density (MVD). By utilizing transwell migration and tube-formation assays, overexpression of CHI3L1 in SW480 cells (human colon cancer cells) enhanced the migration of THP-1 cells (human macrophage cells) and HUVECs (human endothelial cells), and the tube formation of HUVECs. The knockdown of CHI3L1 by RNA interference or the neutralization of CHI3L1 by anti-CHI3L1 antibody displayed strong suppression of CHI3L1-induced migration and tube formation. Cell proliferation assay showed that CHI3L1 overexpression significantly enhanced the proliferation of SW480 cells. Enzyme-linked immunosorbent assay (ELISA) analysis showed that CHI3L1 increased the secretion of inflammatory chemokines, IL-8 and monocyte chemoattractant protein-1 (MCP-1), from SW480 cells through mitogen-activated protein kinase (MAPK) signaling pathway. Both neutralization of IL-8 or MCP-1 and inhibition or knockdown of MAPK in SW480 cells significantly inhibited CHI3L1-induced migration and tube formation. In a xenograft mouse model, overexpression of CHI3L1 in HCT116 cells (human colon cancer cells) enhanced the tumor growth as well as macrophage infiltration and MVD. In conclusion, CHI3L1 expressed in colon cancer cells promotes cancer cell proliferation, macrophage recruitment and angiogenesis. Thus, the inhibition of CHI3L1 activity may be a novel therapeutic strategy for human colorectal cancer.


International Journal of Cancer | 2013

The role of CXCR3 and CXCR4 in colorectal cancer metastasis

Teppei Murakami; Kenji Kawada; Masayoshi Iwamoto; Masatoshi Akagami; Koya Hida; Yuki Nakanishi; Keitaro Kanda; Mayumi Kawada; Hiroshi Seno; Makoto M. Taketo; Yoshiharu Sakai

Chemokines and their receptors play key roles in leukocyte trafficking and are also implicated in cancer metastasis. We previously demonstrated that forced expression of CXCR3 promotes colon cancer metastasis preferentially to the draining lymph nodes (LNs), with poor prognosis. Using clinical colorectal cancer (CRC) samples, here, we show that expressions of CXCR3 and CXCR4 are significantly higher in metastatic foci within LNs and liver compared to primary tumors, whereas ligands for CXCR3 and CXCR4 are not. We also have demonstrated that some human CRC cell lines constitutively express both CXCR3 and CXCR4, and that activation of CXCR3 strengthens the CXCR4‐mediated cell migration in vitro in a synergistic manner. By constructing SW620 cell lines with reduced expression of CXCR3 and/or CXCR4 using microRNA, we investigated in vivo metastatic activities in a mouse rectal transplantation model. Six weeks after inoculation, CXCR3‐, CXCR4‐, and CXCR3/CXCR4 double‐knockdowns significantly reduced metastasis to LNs, liver and lungs, compared to the control (p < 0.05). Importantly, its suppressive effect on LN metastasis was significantly stronger in CXCR3‐ and CXCR3/CXCR4 double‐knockdowns. In addition, CXCR3‐ and CXCR3/CXCR4 double‐knockdowns significantly decreased the dissemination of cancer cells to liver and lungs, even after 2 weeks. These results indicate that targeting CXCR3 and CXCR4 can be a promising therapy against CRC metastasis.


Embo Molecular Medicine | 2012

Nardilysin and ADAM proteases promote gastric cancer cell growth by activating intrinsic cytokine signalling via enhanced ectodomain shedding of TNF‐α

Keitaro Kanda; Hideyuki Komekado; Tateo Sawabu; Shoko Ishizu; Yuki Nakanishi; Masato Nakatsuji; Reiko Akitake-Kawano; Mikiko Ohno; Yoshinori Hiraoka; Mayumi Kawada; Kenji Kawada; Yoshiharu Sakai; Kyoichi Matsumoto; Makoto Kunichika; Takeshi Kimura; Hiroshi Seno; Eiichiro Nishi; Tsutomu Chiba

Nardilysin (NRDc), a metalloendopeptidase of the M16 family, promotes ectodomain shedding of the precursor forms of various growth factors and cytokines by enhancing the protease activities of ADAM proteins. Here, we show the growth‐promoting role of NRDc in gastric cancer cells. Analyses of clinical samples demonstrated that NRDc protein expression was frequently elevated both in the serum and cancer epithelium of gastric cancer patients. After NRDc knockdown, tumour cell growth was suppressed both in vitro and in xenograft experiments. In gastric cancer cells, NRDc promotes shedding of pro‐tumour necrosis factor‐alpha (pro‐TNF‐α), which stimulates expression of NF‐κB‐regulated multiple cytokines such as interleukin (IL)‐6. In turn, IL‐6 activates STAT3, leading to transcriptional upregulation of downstream growth‐related genes. Gene silencing of ADAM17 or ADAM10, representative ADAM proteases, phenocopied the changes in cytokine expression and cell growth induced by NRDc knockdown. Our results demonstrate that gastric cancer cell growth is maintained by autonomous TNF‐α–NF‐κB and IL‐6–STAT3 signalling, and that NRDc and ADAM proteases turn on these signalling cascades by stimulating ectodomain shedding of TNF‐α.


Carcinogenesis | 2013

Inhibitory role of Gas6 in intestinal tumorigenesis

Reiko Akitake-Kawano; Hiroshi Seno; Masato Nakatsuji; Yuto Kimura; Yuki Nakanishi; Takuto Yoshioka; Keitaro Kanda; Mayumi Kawada; Kenji Kawada; Yoshiharu Sakai; Tsutomu Chiba

Growth arrest-specific gene (Gas) 6 is a γ-carboxyglutamic acid domain-containing protein, which shares 43% amino acid identity with protein S. Gas6 has been shown to enhance cancer cell proliferation in vitro. On the other hand, recent studies have demonstrated that Gas6 inhibits toll-like receptor-mediated immune reactions. Immune reactions are known to affect intestinal tumorigenesis. In this study, we investigated how Gas6 contributes to tumorigenesis in the intestine. Administration of recombinant Gas6 weakly, but significantly, enhanced proliferation of intestinal cancer cells (SW480 and HT29), whereas it suppressed the inflammatory responses of Lipopolysaccharide (LPS)-stimulated monocytes (THP-1). Compared with Gas6(+/+) mice, Gas6(-/-) mice exhibited enhanced azoxymethane/dextran sulfate sodium (DSS)-induced tumorigenesis and had a shorter survival. Gas6(-/-) mice also exhibited more severe DSS-induced colitis. DSS-treated Gas6(-/-) mice showed attenuated Socs1/3 messenger RNA expression and enhanced nuclear factor-kappaB activation in the colonic stroma, suggesting that the target of Gas6 is stromal cells. Bone marrow transplantation experiments indicated that both epithelial cells and bone marrow-derived cells are Gas6 sources. Furthermore, the number of intestinal tumors in Apc(Min) Gas6(-/-) mice was higher than that in Apc(Min) Gas6(+/+) mice, resulting in shorter survival. In a group of 62 patients with advanced colorectal cancer, Gas6 immunoreactivity in cancer tissues was positively correlated with prognosis. Thus, we revealed a unique in vivo inhibitory role of Gas6 during the progression of intestinal tumors associated with suppression of stromal immune reactions. These results suggest a novel therapeutic approach for colorectal cancer patients by regulation of stromal immune responses.


PLOS Genetics | 2015

EP4 Receptor–Associated Protein in Macrophages Ameliorates Colitis and Colitis-Associated Tumorigenesis

Masato Nakatsuji; Manabu Minami; Hiroshi Seno; Mika Yasui; Hideyuki Komekado; Sei Higuchi; Risako Fujikawa; Yuki Nakanishi; Akihisa Fukuda; Kenji Kawada; Yoshiharu Sakai; Toru Kita; Peter Libby; Hiroki Ikeuchi; Masayuki Yokode; Tsutomu Chiba

Prostaglandin E2 plays important roles in the maintenance of colonic homeostasis. The recently identified prostaglandin E receptor (EP) 4–associated protein (EPRAP) is essential for an anti-inflammatory function of EP4 signaling in macrophages in vitro. To investigate the in vivo roles of EPRAP, we examined the effects of EPRAP on colitis and colitis-associated tumorigenesis. In mice, EPRAP deficiency exacerbated colitis induced by dextran sodium sulfate (DSS) treatment. Wild-type (WT) or EPRAP-deficient recipients transplanted with EPRAP-deficient bone marrow developed more severe DSS-induced colitis than WT or EPRAP-deficient recipients of WT bone marrow. In the context of colitis-associated tumorigenesis, both systemic EPRAP null mutation and EPRAP-deficiency in the bone marrow enhanced intestinal polyp formation induced by azoxymethane (AOM)/DSS treatment. Administration of an EP4-selective agonist, ONO-AE1-329, ameliorated DSS-induced colitis in WT, but not in EPRAP-deficient mice. EPRAP deficiency increased the levels of the phosphorylated forms of p105, MEK, and ERK, resulting in activation of stromal macrophages in DSS-induced colitis. Macrophages of DSS-treated EPRAP-deficient mice exhibited a marked increase in the expression of pro-inflammatory genes, relative to WT mice. By contrast, forced expression of EPRAP in macrophages ameliorated DSS-induced colitis and AOM/DSS-induced intestinal polyp formation. These data suggest that EPRAP in macrophages functions crucially in suppressing colonic inflammation. Consistently, EPRAP-positive macrophages were also accumulated in the colonic stroma of ulcerative colitis patients. Thus, EPRAP may be a potential therapeutic target for inflammatory bowel disease and associated intestinal tumorigenesis.


PLOS ONE | 2014

Deletion of nardilysin prevents the development of steatohepatitis and liver fibrotic changes

Shoko Ishizu-Higashi; Hiroshi Seno; Eiichiro Nishi; Yoshihide Matsumoto; Kozo Ikuta; Motoyuki Tsuda; Yoshito Kimura; Y. Takada; Yuto Kimura; Yuki Nakanishi; Keitaro Kanda; Hideyuki Komekado; Tsutomu Chiba

Nonalcoholic steatohepatitis (NASH) is an inflammatory form of nonalcoholic fatty liver disease that progresses to liver cirrhosis. It is still unknown how only limited patients with fatty liver develop NASH. Tumor necrosis factor (TNF)-α is one of the key molecules in initiating the vicious circle of inflammations. Nardilysin (N-arginine dibasic convertase; Nrd1), a zinc metalloendopeptidase of the M16 family, enhances ectodomain shedding of TNF-α, resulting in the activation of inflammatory responses. In this study, we aimed to examine the role of Nrd1 in the development of NASH. Nrd1+/+ and Nrd1−/− mice were fed a control choline-supplemented amino acid-defined (CSAA) diet or a choline-deficient amino acid-defined (CDAA) diet. Fatty deposits were accumulated in the livers of both Nrd1+/+ and Nrd1−/− mice by the administration of the CSAA or CDAA diets, although the amount of liver triglyceride in Nrd1−/− mice was lower than that in Nrd1+/+ mice. Serum alanine aminotransferase levels were increased in Nrd1+/+ mice but not in Nrd1−/− mice fed the CDAA diet. mRNA expression of inflammatory cytokines were decreased in Nrd1−/− mice than in Nrd1+/+ mice fed the CDAA diet. While TNF-α protein was detected in both Nrd1+/+ and Nrd1−/− mouse livers fed the CDAA diet, secretion of TNF-α in Nrd1−/− mice was significantly less than that in Nrd1+/+ mice, indicating the decreased TNF-α shedding in Nrd1−/− mouse liver. Notably, fibrotic changes of the liver, accompanied by the increase of fibrogenic markers, were observed in Nrd1+/+ mice but not in Nrd1−/− mice fed the CDAA diet. Similar to the CDAA diet, fibrotic changes were not observed in Nrd1−/− mice fed a high-fat diet. Thus, deletion of nardilysin prevents the development of diet-induced steatohepatitis and liver fibrogenesis. Nardilysin could be an attractive target for anti-inflammatory therapy against NASH.


JCI insight | 2018

Nardilysin controls intestinal tumorigenesis through HDAC1/p53–dependent transcriptional regulation

Keitaro Kanda; Jiro Sakamoto; Yoshihide Matsumoto; Kozo Ikuta; Norihiro Goto; Yusuke Morita; Mikiko Ohno; Kiyoto Nishi; Koji Eto; Yuto Kimura; Yuki Nakanishi; Kanako Ikegami; Takaaki Yoshikawa; Akihisa Fukuda; Kenji Kawada; Yoshiharu Sakai; Akihiro Ito; Minoru Yoshida; Takeshi Kimura; Tsutomu Chiba; Eiichiro Nishi; Hiroshi Seno

Colon cancer is a complex disease affected by a combination of genetic and epigenetic factors. Here we demonstrate that nardilysin (N-arginine dibasic convertase; NRDC), a metalloendopeptidase of the M16 family, regulates intestinal tumorigenesis via its nuclear functions. NRDC is highly expressed in human colorectal cancers. Deletion of the Nrdc gene in ApcMin mice crucially suppressed intestinal tumor development. In ApcMin mice, epithelial cell-specific deletion of Nrdc recapitulated the tumor suppression observed in Nrdc-null mice. Moreover, epithelial cell-specific overexpression of Nrdc significantly enhanced tumor formation in ApcMin mice. Notably, epithelial NRDC controlled cell apoptosis in a gene dosage-dependent manner. In human colon cancer cells, nuclear NRDC directly associated with HDAC1, and controlled both acetylation and stabilization of p53, with alterations of p53 target apoptotic factors. These findings demonstrate that NRDC is critically involved in intestinal tumorigenesis through its epigenetic regulatory function, and targeting NRDC may lead to a novel prevention or therapeutic strategy against colon cancer.


Digestive and Liver Disease | 2018

Gene expression profile of Dclk1+ cells in intestinal tumors

Yuichi Yamaga; Akihisa Fukuda; Yuki Nakanishi; Norihiro Goto; Yoshihide Matsumoto; Takuto Yoshioka; Takahisa Maruno; Tsutomu Chiba; Hiroshi Seno

BACKGROUND Accumulating evidence has shown the existence of tumor stem cells with therapeutic potential. Previously, we reported that doublecortin like kinase 1 (Dclk1) marks tumor stem cells but not normal stem cells in the intestine of ApcMin/+ mice, and that Dclk1- and Lgr5-double positive tumor cells are the tumor stem cells of intestinal tumors. AIM To investigate molecules highly expressed in the Dclk1+ normal intestinal and Dclk1+ tumor cells in ApcMin/+ mice. METHODS We used microarray analyses to examine the gene expression profile of Dclk1+ cells in both mouse normal intestinal epithelium and ApcMin/+ mouse intestinal tumors. We also performed immunofluorescence analyses. RESULTS Genes related to microtubules and the actin cytoskeleton (e.g., Rac2), and members of the Src family kinases (i.e., Hck, Lyn, Csk, and Ptpn6) were highly expressed in both Dclk1+ normal intestinal and Dclk1+ tumor cells. Phosphorylated Hck and phosphorylated Lyn were expressed in Lgr5+ cells in the intestinal tumors of Lgr5EGFP-IRES-CreERT2/+; ApcMin/+ mice. CONCLUSION We revealed factors that are highly expressed in Dclk1+ intestinal tumor cells, which may help to develop cancer stem cell-targeted therapy in future.

Collaboration


Dive into the Yuki Nakanishi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge