Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yukio Horikawa is active.

Publication


Featured researches published by Yukio Horikawa.


Nature Genetics | 2000

Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus

Yukio Horikawa; Naohisa Oda; Nancy J. Cox; Xiangquan Li; Marju Orho-Melander; Manami Hara; Yoshinori Hinokio; Tom H. Lindner; Hirosato Mashima; Peter Schwarz; Laura del Bosque-Plata; Yohko Horikawa; Yukie Oda; Issei Yoshiuchi; Susan Colilla; Kenneth S. Polonsky; Shan Wei; Patrick Concannon; Naoko Iwasaki; Jan Schulze; Leslie J. Baier; Clifton Bogardus; Leif Groop; Eric Boerwinkle; Craig L. Hanis; Graeme I. Bell

Type 2 or non-insulin-dependent diabetes mellitus (NIDDM) is the most common form of diabetes worldwide, affecting approximately 4% of the worlds adult population. It is multifactorial in origin with both genetic and environmental factors contributing to its development. A genome-wide screen for type 2 diabetes genes carried out in Mexican Americans localized a susceptibility gene, designated NIDDM1, to chromosome 2. Here we describe the positional cloning of a gene located in the NIDDM1 region that shows association with type 2 diabetes in Mexican Americans and a Northern European population from the Botnia region of Finland. This putative diabetes-susceptibility gene encodes a ubiquitously expressed member of the calpain-like cysteine protease family, calpain-10 (CAPN10). This finding suggests a novel pathway that may contribute to the development of type 2 diabetes.


Journal of Clinical Investigation | 2000

A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance

Leslie J. Baier; Paskasari A. Permana; Xiaolin Yang; Richard E. Pratley; Robert L. Hanson; Gong‐Qing Shen; David D. Mott; William C. Knowler; Nancy J. Cox; Yukio Horikawa; Naohisa Oda; Graeme I. Bell; Clifton Bogardus

Previous linkage studies in Mexican-Americans localized a major susceptibility locus for type 2 diabetes, NIDDM1, to chromosome 2q. This evidence for linkage to type 2 diabetes was recently found to be associated with a common G-->A polymorphism (UCSNP-43) within the CAPN10 gene. The at-risk genotype was homozygous for the UCSNP-43 G allele. In the present study among Pima Indians, the UCSNP-43 G/G genotype was not associated with an increased prevalence of type 2 diabetes. However, Pima Indians with normal glucose tolerance, who have a G/G genotype at UCSNP-43, were found to have decreased rates of postabsorptive and insulin-stimulated glucose turnover that appear to result from decreased rates of glucose oxidation. In addition, G/G homozygotes were found to have reduced CAPN10 mRNA expression in their skeletal muscle. A decreased rate of insulin-mediated glucose turnover, or insulin resistance, is one mechanism by which the polymorphism in CAPN10 may increase susceptibility to type 2 diabetes mellitus in older persons.


American Journal of Human Genetics | 2001

Studies of Association between the Gene for Calpain-10 and Type 2 Diabetes Mellitus in the United Kingdom

Julie C. Evans; Timothy M. Frayling; Paul G. Cassell; P. J. Saker; Graham A. Hitman; M. Walker; Jonathan C. Levy; Stephen O’Rahilly; Pamidighantam V. Subba Rao; Amanda J. Bennett; Elizabeth Jones; Stephan Menzel; Philip Prestwich; Nikol Simecek; Marie Wishart; Ranjit Dhillon; C Fletcher; Ann Millward; Andrew G. Demaine; Terence J. Wilkin; Yukio Horikawa; Nancy J. Cox; Graeme I. Bell; Sian Ellard; Mark I. McCarthy; Andrew T. Hattersley

Variation in CAPN10, the gene encoding the ubiquitously expressed cysteine protease calpain-10, has been associated with type 2 diabetes in Mexican Americans and in two northern-European populations, from Finland and Germany. We have studied CAPN10 in white subjects of British/Irish ancestry, using both family-based and case-control studies. In 743 sib pairs, there was no evidence of linkage at the CAPN10 locus, which thereby excluded it as a diabetes-susceptibility gene, with an overall sib recurrence risk, lambda(S), of 1.25. We examined four single-nucleotide polymorphisms (SNP-44, -43, -19, and -63) previously either associated with type 2 diabetes or implicated in transcriptional regulation of calpain-10 expression. We did not find any association between SNP-43, -19, and -63, either individually or as part of the previously described risk haplotypes. We did, however, observe significantly increased (P=.033) transmission of the less common C allele at SNP-44, to affected offspring in parents-offspring trios (odds ratio 1.6). An independent U.K. case-control study and a small discordant-sib study did not show significant association individually. In a combined analysis of all U.K. studies (P=.015) and in combination with a Mexican American study (P=.004), the C allele at SNP-44 is associated with type 2 diabetes. Sequencing of the coding region of CAPN10 in a group of U.K. subjects revealed four coding polymorphisms-L34V, T504A, R555C, and V666I. The T504A polymorphism was in perfect linkage disequilibrium with the diabetes-associated C allele at SNP-44, suggesting that the synthesis of a mutant protein and/or altered transcriptional regulation could contribute to diabetes risk. In conclusion, we were not able to replicate the association of the specific calpain-10 alleles identified by Horikawa et al. but suggest that other alleles at this locus may increase type 2 diabetes risk in the U.K. population.


American Journal of Human Genetics | 2003

Meta-Analysis and a Large Association Study Confirm a Role for Calpain-10 Variation in Type 2 Diabetes Susceptibility

Michael N. Weedon; Peter Schwarz; Yukio Horikawa; Naoko Iwasaki; Thomas Illig; Rolf Holle; Wolfgang Rathmann; Thomas Selisko; Jan Schulze; K R Owen; Julie C. Evans; Laura del Bosque-Plata; Graham A. Hitman; M. Walker; Jonathan C. Levy; Mike Sampson; Graeme I. Bell; Mark McCarthy; Andrew T. Hattersley; Timothy M. Frayling

To the Editor: Variation in the calpain-10 gene (CAPN10 [MIM 605286]) was recently linked and associated with type 2 diabetes mellitus (T2DM) susceptibility (Horikawa et al. 2000). The initial linkage of T2DM to chromosome 2 was found in a population of Mexican Americans from Starr County, Texas (Hanis et al. 1996). Specific combinations of three intronic variants, designated “SNP-43,” “SNP-19,” and “SNP-63,” that capture most of the haplotype diversity at CAPN10 were associated with a three-fold increased risk of T2DM in this population and could account for the observed linkage (Horikawa et al. 2000). Subsequent association and linkage studies of these three polymorphisms in other populations have produced conflicting results, with association being observed in some populations (Baier et al. 2000 [Pima Indian]; Cassell et al. 2002 [South Indian]; Garant et al. 2002 [African American]; Malecki et al. 2002 [Polish]; Orho-Melander et al. 2002 [Finnish/Botnia]), but not others (Evans et al. 2001 [British]; Hegele et al. 2001 [Oji-Cree Indians]; Tsai et al. 2001 [Samoan]; Xiang et al. 2001 [Chinese]; Daimon et al. 2002 [Japanese]; Elbein et al. 2002 [whites from Utah]; Fingerlin et al. 2002 [Finnish]; Rasmussen et al. 2002 [Danish and Swedish]; Horikawa et al. 2003 [Japanese]). We previously reported that another variant, SNP-44 (designated “CAPN10-g4841T→C”; minor allele frequency 16%), located in intron 3 and 11 bp from SNP-43, was independently associated with T2DM in whites from the United Kingdom (Evans et al. 2001). Further studies have provided tentative support for a role of SNP-44 in T2DM and related traits: associations with polycystic ovary syndrome (Gonzalez et al. 2002) and with measures of oral glucose tolerance (Wang et al. 2002; Tschritter et al. 2003) have been reported. Functional studies suggest that SNP-44 is located in an enhancer element and might affect CAPN10 expression (Horikawa et al. 2000). Also, in the U.K., German, Japanese, and South Indian populations, SNP-44 is in perfect linkage disequilibrium (r2=1) with a missense mutation Thr504Ala (SNP-110) and two polymorphisms in the 5′-UTR (SNP-134 and SNP-135) (Evans et al. 2001; Cassell et al. 2002; Y. Horikawa and P. E. Schwarz, unpublished data). To assess the association of SNP-44 with T2DM more comprehensively, we performed a meta-analysis of all published SNP-44/T2DM association study data. To identify all relevant published studies, we searched PubMed using the keywords “calpain 10,” “diabetes,” “44,” “SNP 44,” “CAPN10,” and “type 2,” in different combinations. When necessary, authors were contacted to obtain exact genotype numbers, so that precise odds ratios (ORs) from each study could be calculated. Our search identified 10 published case/control studies, consisting of 3,303 subjects. The studies were spread across a number of ethnic groups: British (three studies, Evans et al. 2001); Chinese (Wang et al. 2002); Japanese (Daimon et al. 2002; Horikawa et al. 2003); Finnish/Botnia (two studies, Orho-Melander et al. 2002); South Indian (Cassell et al. 2002); and Mexican American (Horikawa et al. 2000). The frequency of the T2DM-associated SNP-44 C allele (allele 2) ranged from 6% in Mexican Americans to 25% in the Botnia I control population. There was no evidence for OR heterogeneity (Q test P=.27), and, although these studies are only a small sample from the many existing T2DM genetic resources, a funnel-plot analysis (Egger et al. 1997) suggested an absence of publication bias (P=.44). A Mantel-Haenszel meta-analysis of these studies showed that the C allele was associated with increased risk of T2DM (OR 1.17 [1.02–1.34], P=.02). Three transmission/disequilibrium tests (TDT) had been performed (Evans et al. 2001; Cassell et al. 2002; Orho-Melander et al. 2002). The combined TDT results demonstrated that the C allele was significantly overtransmitted (117 transmitted vs. 77 not transmitted, P=.004) from heterozygous parents to diabetic offspring. Although this result cannot be considered independent replication, as proband data was included in the case/control meta-analysis from two of the TDT studies (Evans et al. 2001; Cassell et al. 2002), it provides evidence that the association is not due to population stratification. Of the 10 studies in the meta-analysis, only 1 reported a significant (P<.05) association (Evans et al. 2001). However, these studies were small and the mean power to detect an OR of 1.17 at P<.05 was ∼11% (range 5%–14%). In the context of genetic association studies, which test many polymorphisms in numerous candidate genes, a P value of .02 can only be considered evidence suggestive of a real association. We therefore genotyped SNP-44 in an additional 4,213 subjects: 3,274 white European subjects from four case/control studies (one British, two German, and one Czech); 691 Japanese subjects from two case/control studies; and 248 Mexican (mestizo) subjects from Mexico City and Orizaba City from one case/control study. Overall, this provided 2,056 subjects with T2DM and 2,157 controls, and a power of ∼80% to detect an OR of 1.17. Clinical details of the study subjects are presented in table 1; further details are available as supplementary information from the authors. All studies were approved by the relevant ethics committee, and all subjects gave their informed consent. Table 1 Clinical Characteristics of Subjects in Study[Note] When all the studies were combined, there was no evidence for between-studies OR heterogeneity (Q test P=.23); a Mantel-Haenszel fixed-effects model was therefore used for subsequent analysis. Meta-analysis of the new studies gave an OR for the SNP-44 C allele of 1.18 (1.04–1.34), P=.01 (fig. 1). A combined meta-analysis of all previously published data and our new data gave an OR of 1.17 (1.07–1.29), P=.0007. All study populations were in Hardy-Weinberg equilibrium except the T2DM cohort of Horikawa et al. 2003 (P=.005) and the control population of the third Japanese study (P=.02). Although these deviations may be due to random fluctuation and multiple-hypothesis testing, they contributed a large amount to heterogeneity (27% of the Q statistic); excluding these studies, the SNP-44 C allele OR for the new studies was 1.23 (1.07–1.40), P=.003; the overall OR was 1.19 (1.08–1.31), P=.0005. This OR is of similar magnitude to that of E23K (Gloyn et al. 2003; Love-Gregory et al. 2003; Nielsen et al. 2003) and Pro12Ala (Altshuler et al. 2000), the other common variants confirmed as T2DM-susceptibility polymorphisms. An OR of 1.17 is low and may help explain why there is little evidence for linkage of the CAPN10 region to T2DM in most populations. The haplotypes responsible for the CAPN10 linkage seen in the Mexican American population were associated with a higher T2DM OR (∼3.0) and were more likely to be detected by linkage analysis (Horikawa et al. 2000). These haplotypes are less common in other populations. Figure 1 Mantel-Haenszel OR meta-analysis plot (fixed effects) for SNP-44 association with T2DM. Point estimates and 95% CLs for each previously published, new, and combined case/control study. SNP-44 is in perfect linkage disequilibrium (r2=1) with the missense mutation, Thr504Ala, and two SNPs (SNP-134 and SNP-135) in the 5′-UTR and therefore may not be the causal variant. Further haplotype and functional analyses are required to confirm which of these polymorphisms contribute to T2DM susceptibility. In conclusion, our results have confirmed that a CAPN10 haplotype defined by the SNP-44 polymorphism predisposes to T2DM. Meta-analyses of published genetic associations, combined with large replication studies, are a powerful approach to detecting susceptibility variants in common disease.


Diabetes | 1998

Frameshift mutation, A263fsinsGG, in the hepatocyte nuclear factor-1beta gene associated with diabetes and renal dysfunction.

Hidekazu Nishigori; Shirou Yamada; Tomoko Kohama; Hideaki Tomura; Kimie Sho; Yukio Horikawa; Graeme I. Bell; Toshiyuki Takeuchi; Jun Takeda

who had been diagnosed with diabetes at 19 years of age (BMI 18.3 kg/m 2 ) (Fig. LA). This mutation causes a frameshift and the generation of a mutant truncated protein of 264 amino acids that lacks the transcription activation domain. Screening other family members showed that the mutation was also present in the probands sister (IV-3), who had been diagnosed with glycosuria at 14 years of age during the course of an annual school physical examination. The mutation was also found in the probands father (III-2), who had been diagnosed with diabetes at 61 years of age. The two affected sisters (IV-2 and IV-3) are currently being treated with 10-20 U of insulin, and their father with diet. Medical records indicate that the paternal grandmother (D-2) had early-onset diabetes, and so also may have inherited the mutation. The frequency of HNF-1(3 gene mutations in our study population of Japanese subjects who have early-onset type 2 diabetes with a first-degree relative with diabetes is 2.5%. Together with the previous observation by Horikawa et al. (10), our results indicate that mutations in the HNF-ip gene are not a major cause of early-onset type 2 diabetes in Japanese, although the results apply only to the coding region of the HNF-1(3 gene. The proband and her sister had decreased renal function (creatinine clearance <50 ml/min) and multiple bilateral renal cysts with three to five cysts per kidney (0.3-1.2 cm in diameter) (Fig. IE). Their father also had chronic renal failure with renal cysts, which is now being treated by hemodialysis. While the two affected sisters showed no evidence of proteinuria, the father had persistent mild proteinuria (<300 mg/day), which was first noticed during the course of an annual health examination 20 years before the diagnosis of diabetes. The A263fsinsGG mutation was also found in the nondiabetic 2-year-old son (V-l) of the proband and the 5-year-old daughter (V-2) of the affected sister, who also had elevated levels of serum creatinine (1.3-1.8 mg/dl; normal 0.6-1.0 mg/dl) at birth. Moreover, subject V-l was found at birth to have bilateral renal cysts measuring several millimeters in diameter, and fetal ultrasound examination at 27 weeks of gestation revealed renal abnormalities, including bilateral enlarged kidney mass and multiple parenchymal hyperechoic nodules (Fig. LET). These observations suggest that the A263fsinsGG mutation in the HNF-ip gene might be associated with diabetes and renal dysfunction in this family. Renal dysfunction described in this report is defined broadly, including proteinuria, decreased renal function, and renal cysts. Moreover, these abnormalities appear to precede the onset of dia


The Journal of Clinical Endocrinology and Metabolism | 2008

Replication of Genome-Wide Association Studies of Type 2 Diabetes Susceptibility in Japan

Yukio Horikawa; Kazuaki Miyake; Kazuki Yasuda; Mayumi Enya; Yushi Hirota; Kazuya Yamagata; Yoshinori Hinokio; Yoshitomo Oka; Naoko Iwasaki; Yasuhiko Iwamoto; Yuichiro Yamada; Yutaka Seino; Hiroshi Maegawa; Atsunori Kashiwagi; Ken Yamamoto; Katsushi Tokunaga; Jun Takeda; Masato Kasuga

BACKGROUND In Europeans and populations of European origin, several groups have recently identified novel type 2 diabetes susceptibility genes, including FTO, SLC30A8, HHEX, CDKAL1, CDKN2B, and IGF2BP2, none of which were in the list of functional candidates. OBJECTIVE AND DESIGN The aim of this study was to replicate in a Japanese population previously identified associations of single nucleotide polymorphisms (SNPs) within 10 candidate loci with type 2 diabetes using a relatively large sample size: 1921 subjects with type 2 diabetes and 1622 normal controls. RESULTS A total of 15 SNPs were genotyped. Eight SNPs in five loci were found to be associated with type 2 diabetes: rs3802177 [odds ratio (OR) = 1.16 (95% confidence interval (CI) 1.05-1.27); P = 4.5 x 10(-3)] in SLC30A8; rs1111875 [OR = 1.27 (95% CI 1.14-1.40); P = 1.4 x 10(-5)] and rs7923837 [OR = 1.27 (95% CI 1.13-1.43); P = 1.0 x 10(-4)] in HHEX; rs10811661 [OR = 1.27 (95% CI 1.15-1.40); P = 1.9 x 10(-6)] in CDKN2B; rs4402960 [OR = 1.23 (95% CI 1.11-1.36); P = 8.1 x 10(-5)] and rs1470579 [OR = 1.18 (95% CI 1.07-1.31); P = 8.3 x 10(-4)] in IGF2BP2; and rs7754840 [OR = 1.28 (95% CI 1.17-1.41); P = 4.5 x 10(-7)] and rs7756992 [OR = 1.27 (95% CI 1.15-1.40); P = 9.8 x 10(-7)] in CDKAL1. The first and second strongest associations were found at variants in CDKAL1 and CDKN2B, both of which are involved in the regenerative capacity of pancreatic beta-cells. CONCLUSION Some of these variants represent common type 2 diabetes-susceptibility genes in both Japanese and Europeans.


American Journal of Human Genetics | 2002

Geographic and Haplotype Structure of Candidate Type 2 Diabetes-Susceptibility Variants at the Calpain-10 Locus

Stephanie M. Fullerton; Angelika Bartoszewicz; Gustavo Ybazeta; Yukio Horikawa; Graeme I. Bell; Kenneth K. Kidd; Nancy J. Cox; Richard R. Hudson; Anna Di Rienzo

Recently, a positional cloning study proposed that haplotypes at the calpain-10 locus (CAPN10) are associated with increased risk of type 2 diabetes, or non-insulin-dependent diabetes mellitus, in Mexican Americans, Finns, and Germans. To inform the interpretation of the original mapping results and to look for evidence for the action of natural selection on CAPN10, we undertook a population-based genotyping survey of the candidate susceptibility variants. First, we genotyped sites 43, 19, and 63 (the haplotype-defining variants previously proposed) and four closely linked SNPs, in 561 individuals from 11 populations from five continents, and we examined the linkage disequilibrium among them. We then examined the ancestral state of these sites by sequencing orthologous portions of CAPN10 in chimpanzee and orangutan (the identity of sites 43 and 19 was further investigated in a limited sample of other great apes and Old World and New World monkeys). Our survey suggests larger-than-expected differences in the distribution of CAPN10 susceptibility variants between African and non-African populations, with common, derived haplotypes in European and Asian samples (including one of two proposed risk haplotypes) being rare or absent in African samples. These results suggest a history of positive natural selection at the locus, resulting in significant geographic differences in polymorphism frequencies. The relationship of these differences to disease risk is discussed.


FEBS Letters | 2009

Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes

Katsumi Iizuka; Jun Takeda; Yukio Horikawa

Fibroblast growth factor 21 (FGF21) has beneficial effects of improving the plasma glucose and lipid profiles in diabetic rodents. Here, we investigated carbohydrate response element binding protein (ChREBP) involvement in the regulation of FGF21 mRNA expression in liver. Glucose stimulation and adenoviral overexpression of dominant active ChREBP increased FGF21 mRNA. Consistently, adenoviral expression of dominant negative Mlx inhibited glucose induction of FGF21 mRNA. Furthermore, deletion studies of mouse FGF21 gene promoter (−2000 to +65 bp) revealed a glucose responsive region between −74 and −52 bp. These findings suggest that FGF21 expression is regulated by ChREBP.


Diabetes | 1997

Organization and partial sequence of the hepatocyte nuclear factor-4 alpha/MODY1 gene and identification of a missense mutation, R127W, in a Japanese family with MODY

Hiroto Furuta; Naoko Iwasaki; Naohisa Oda; Yoshinori Hinokio; Yukio Horikawa; Kazuya Yamagata; Nobuki Yano; Jun Sugahiro; Makiko Ogata; Hisako Ohgawara; Yasue Omori; Yasuhiko Iwamoto; Graeme I. Bell

Hepatocyte nuclear factor-4α (HNF-4α) is a member of the nuclear receptor superfamily, a class of ligand-activated transcription factors. A nonsense mutation in the gene encoding this transcription factor was recently found in a white family with one form of maturity-onset diabetes of the young, MODY1. Here, we report the exonintron organization and partial sequence of the human HNF-4α gene. In addition, we have screened the 12 exons, flanking introns and minimal promoter region for mutations in a group of 57 unrelated Japanese subjects with early-onset NIDDM/MODY of unknown cause. Eight nucleotide substitutions were noted, of which one resulted in the mutation of a conserved arginine residue, Argl27 (CGG)→Trp (TGG) (designated R127W), located in the T-box, a region of the protein that may play a role in HNF-4α dimerization and DNA binding. This mutation was not found in 214 unrelated nondiabetic subjects (53 Japanese, 53 Chinese, 51 white, and 57 African-American). The R127W mutation was only present in three of five diabetic members in this family, indicating that it is not the only cause of diabetes in this family. The remaining seven nucleotide substitutions were located in the proximal promoter region and introns. They are not predicted to affect the transcription of the gene or mRNA processing and represent polymorphisms and rare variants. The results suggest that mutations in the HNF-4α gene may cause early-onset NIDDM/MODY in Japanese but they are less common than mutations in the HNF-1α/MODY3 gene. The information on the sequence of the HNF-4α gene and its promoter region will facilitate the search for mutations in other populations and studies of the role of this gene in determining normal pancreatic β-cell function.


Journal of Human Genetics | 2008

Association of TCF7L2 polymorphisms with susceptibility to type 2 diabetes in 4,087 Japanese subjects

Kazuaki Miyake; Yukio Horikawa; Kazuo Hara; Kazuki Yasuda; Haruhiko Osawa; Hiroto Furuta; Yushi Hirota; Kazuya Yamagata; Yoshinori Hinokio; Yoshitomo Oka; Naoko Iwasaki; Yasuhiko Iwamoto; Yuichiro Yamada; Yutaka Seino; Hiroshi Maegawa; Atsunori Kashiwagi; Ken Yamamoto; Katsushi Tokunaga; Jun Takeda; Hideichi Makino; Kishio Nanjo; Takashi Kadowaki; Kasuga M

AbstractTranscription factor 7-like 2 (TCF7L2) has been shown to be associated with type 2 diabetes mellitus in multiple ethnic groups. Regarding the Asian population, Horikoshi et al. (Diabetologia 50:747–751, 2007) and Hayashi et al. (Diabetologia 50:980–984, 2007) reported that single nucleotide polymorphisms (SNPs) in TCF7L2 were associated with type 2 diabetes in the Japanese population, while contradictory results were reported for Han Chinese populations. The aim of this study was to investigate the associations of the TCF7L2 gene with type 2 diabetes using a relatively large sample size: 2,214 Japanese individuals with type 2 diabetes and 1,873 normal controls. The minor alleles of rs7903146, rs11196205, and rs12255372 showed significant associations with type 2 diabetes (OR = 1.48, P = 2.7 × 10−4; OR = 1.39, P = 4.6 × 10−4; OR = 1.70, P = 9.8 × 10−5, respectively) in the combined sample sets. However, neither rs11196218 nor rs290487 showed a significant association. These results indicate that TCF7L2 is an important susceptibility gene for type 2 diabetes in the Japanese population.

Collaboration


Dive into the Yukio Horikawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy J. Cox

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naohisa Oda

Fujita Health University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshinori Hinokio

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Hiroto Furuta

Wakayama Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge