Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yukio Imamura is active.

Publication


Featured researches published by Yukio Imamura.


Cell | 2001

The Membrane-Anchored MMP Inhibitor RECK Is a Key Regulator of Extracellular Matrix Integrity and Angiogenesis

Junseo Oh; Rei Takahashi; Shunya Kondo; Akira Mizoguchi; Eijiro Adachi; Regina M. Sasahara; Sachiko Nishimura; Yukio Imamura; Hitoshi Kitayama; David B. Alexander; Chizuka Ide; Thomas P. Horan; Tsutomu Arakawa; Hisahito Yoshida; Shin-Ichi Nishikawa; Yoshifumi Itoh; Motoharu Seiki; Shigeyoshi Itohara; Chiaki Takahashi; Makoto Noda

Matrix metalloproteinases (MMPs) are essential for proper extracellular matrix remodeling. We previously found that a membrane-anchored glycoprotein, RECK, negatively regulates MMP-9 and inhibits tumor invasion and metastasis. Here we show that RECK regulates two other MMPs, MMP-2 and MT1-MMP, known to be involved in cancer progression, that mice lacking a functional RECK gene die around E10.5 with defects in collagen fibrils, the basal lamina, and vascular development, and that this phenotype is partially suppressed by MMP-2 null mutation. Also, vascular sprouting is dramatically suppressed in tumors derived from RECK-expressing fibrosarcoma cells grown in nude mice. These results support a role for RECK in the regulation of MMP-2 in vivo and implicate RECK downregulation in tumor angiogenesis.


Mediators of Inflammation | 2013

Remarkable Role of Indoleamine 2,3-Dioxygenase and Tryptophan Metabolites in Infectious Diseases: Potential Role in Macrophage-Mediated Inflammatory Diseases

Yuki Murakami; Masato Hoshi; Yukio Imamura; Yuko Arioka; Yasuko Yamamoto; Kuniaki Saito

Indoleamine 2,3-dioxygenase 1 (IDO1), the L-tryptophan-degrading enzyme, plays a key role in the immunomodulatory effects on several types of immune cells. Originally known for its regulatory function during pregnancy and chronic inflammation in tumorigenesis, the activity of IDO1 seems to modify the inflammatory state of infectious diseases. The pathophysiologic activity of L-tryptophan metabolites, kynurenines, is well recognized. Therefore, an understanding of the regulation of IDO1 and the subsequent biochemical reactions is essential for the design of therapeutic strategies in certain immune diseases. In this paper, current knowledge about the role of IDO1 and its metabolites during various infectious diseases is presented. Particularly, the regulation of type I interferons (IFNs) production via IDO1 in virus infection is discussed. This paper offers insights into new therapeutic strategies in the modulation of viral infection and several immune-related disorders.


Shock | 2012

Systemic involvement of high-mobility group box 1 protein and therapeutic effect of anti-high-mobility group box 1 protein antibody in a rat model of crush injury.

Junya Shimazaki; Naoya Matsumoto; Hiroshi Ogura; Takashi Muroya; Yasuyuki Kuwagata; Junichiro Nakagawa; Kazuma Yamakawa; Hideo Hosotsubo; Yukio Imamura; Takeshi Shimazu

ABSTRACT Patients with crush injury often present systemic inflammatory response syndrome and fall into multiple organ failure. The mechanism by which the local tissue damage induces distant organ failure is still unclear. We focused on high-mobility group box 1 protein (HMGB1) as one of the damage-associated molecular pattern molecules that cause systemic inflammation in crush injury. We investigated involvement of HMGB1 and the effects of treatment with anti-HMGB1 antibody in a rat model of crush injury. Both hindlimbs of rats were compressed for 6 h and then released. In the crush injury group, the level of serum HMGB1 peaked at 3 h after releasing compression, followed by the increasing in the serum levels of interleukin 6 and tumor necrosis factor &agr;. Hematoxylin-eosin staining showed substantial damage in the lung 24 h after the crush injury, with upregulation of the expression of receptor for advanced glycation end products, as revealed by immunohistochemical analysis. Intravenous administration of anti-HMGB1 antibody improved survival (n = 20 each group) and significantly suppressed serum levels of HMGB1, interleukin 6, and tumor necrosis factor &agr; compared with the untreated crush injury group (n = 6–9 each group). Histological findings of lung damage were ameliorated, and the expression of receptor for advanced glycation end products was hampered by the treatment. These results indicate that HMGB1 is released in response to damage immediately after crush injury and acts as a proinflammatory mediator. Administration of anti-HMGB1 antibody reduced inflammatory reactions and improved survival by blocking extracellular HMGB1. Thus, HMGB1 appears to be a therapeutic target, and anti-HMGB1 antibody may become a promising novel therapy against crush injury to prevent the progression to multiple organ failure.


PLOS ONE | 2013

Electrical Vagus Nerve Stimulation Attenuates Systemic Inflammation and Improves Survival in a Rat Heatstroke Model

Kazuma Yamakawa; Naoya Matsumoto; Yukio Imamura; Takashi Muroya; Tomoki Yamada; Junichiro Nakagawa; Junya Shimazaki; Hiroshi Ogura; Yasuyuki Kuwagata; Takeshi Shimazu

This study was performed to gain insights into novel therapeutic approaches for the treatment of heatstroke. The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical vagus nerve stimulation (VNS) reportedly suppresses pro-inflammatory cytokine release in several models of inflammatory disease. Here, we evaluated whether electrical VNS attenuates severe heatstroke, which induces a systemic inflammatory response. Anesthetized rats were subjected to heat stress (41.5°C for 30 minutes) with/without electrical VNS. In the VNS-treated group, the cervical vagus nerve was stimulated with constant voltage (10 V, 2 ms, 5 Hz) for 20 minutes immediately after completion of heat stress. Sham-operated animals underwent the same procedure without stimulation under a normothermic condition. Seven-day mortality improved significantly in the VNS-treated group versus control group. Electrical VNS significantly suppressed induction of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 in the serum 6 hours after heat stress. Simultaneously, the increase of soluble thrombomodulin and E-selectin following heat stress was also suppressed by VNS treatment, suggesting its protective effect on endothelium. Immunohistochemical analysis using tissue preparations obtained 6 hours after heat stress revealed that VNS treatment attenuated infiltration of inflammatory (CD11b-positive) cells in lung and spleen. Interestingly, most cells with increased CD11b positivity in response to heat stress did not express α7 nicotinic acetylcholine receptor in the spleen. These data indicate that electrical VNS modulated cholinergic anti-inflammatory pathway abnormalities induced by heat stress, and this protective effect was associated with improved mortality. These findings may provide a novel therapeutic strategy to combat severe heatstroke in the critical care setting.


Neuroreport | 2003

Possible involvement of Rap1 and Ras in glutamatergic synaptic transmission.

Yukio Imamura; Naoya Matsumoto; Shunya Kondo; Hitoshi Kitayama; Makoto Noda

Rap1A, first identified as a suppressor of transformed phenotype induced by an activated ras oncogene, is abundantly expressed in the brain. Its neurophysiological function, however, is poorly understood. When an activated Rap1A mutant (Rap1-12V) or a dominant negative H-Ras mutant (Ras-17N) was expressed in CA1 neurons in cultured hippocampal slices using the sindbis virus-mediated gene transfer technique, NMDA receptor current in response to Schaffer collateral stimulation was suppressed. Expression of activated H-Ras mutant (Ras-12V) resulted in the elevation of both NMDA receptor current and AMPA receptor current. These results implicate counteracting functions of Ras and Rap1 in the regulation of NMDA receptor-mediated synaptic transmission and a positive regulatory role of Ras in AMPA receptor-mediated synaptic transmission.


Journal of Neurochemistry | 2007

Localization of the membrane-anchored MMP-regulator RECK at the neuromuscular junctions

Satoshi Kawashima; Yukio Imamura; Ediriweera P. S. Chandana; Toru Noda; Rei Takahashi; Eijiro Adachi; Chiaki Takahashi; Makoto Noda

Nerve apposition on nicotinic acetylcholine receptor clusters and invagination of the post‐synaptic membrane (i.e. secondary fold formation) occur by embryonic day 18.5 at the neuromuscular junctions (NMJs) in mouse skeletal muscles. Finding the molecules expressed at the NMJ at this stage of development may help elucidating how the strong linkage between a nerve terminal and a muscle fiber is established. Immunohistochemical analyses indicated that the membrane‐anchored matrix metalloproteinase regulator RECK was enriched at the NMJ in adult skeletal muscles. Confocal and electron microscopy revealed the localization of RECK immunoreactivity in secondary folds and subsynaptic intracellular compartments in muscles. Time course studies indicated that RECK immunoreactivity becomes associated with the NMJ in the diaphragm at around embryonic day 18.5 and thereafter. These findings, together with known properties of RECK, support the hypothesis that RECK participates in NMJ formation and/or maintenance, possibly by protecting extracellular components, such as synaptic basal laminae, from proteolytic degradation.


Journal of Neurochemistry | 2010

The Reck tumor suppressor protein alleviates tissue damage and promotes functional recovery after transient cerebral ischemia in mice

Huan Wang; Yukio Imamura; Ryota Ishibashi; Ediriweera P. S. Chandana; Mako Yamamoto; Makoto Noda

J. Neurochem. (2010) 115, 385–398.


Scientific Reports | 2016

Depressive symptoms as a side effect of Interferon-α therapy induced by induction of indoleamine 2,3-dioxygenase 1.

Yuki Murakami; Takaaki Ishibashi; Eiichi Tomita; Yukio Imamura; Tomoyuki Tashiro; Kanitta Watcharanurak; Makiya Nishikawa; Yuki Takahashi; Yoshinobu Takakura; Satoko Mitani; Hidetsugu Fujigaki; Yoshiji Ohta; Hisako Kubo; Takayoshi Mamiya; Toshitaka Nabeshima; Hyoung-Chun Kim; Yasuko Yamamoto; Kuniaki Saito

Depression is known to occur frequently in chronic hepatitis C viral (HCV) patients receiving interferon (IFN)-α therapy. In this study, we investigated whether indoleamine 2,3-dioxygenase1 (IDO1)-mediated tryptophan (TRP) metabolism plays a critical role in depression occurring as a side effect of IFN-α therapy. Increases in serum kynurenine (KYN) and 3-hydroxykynurenine (3-HK) concentrations and in the ratios of KYN/TRP and 3-HK/kynurenic acid (KA) were much larger in depressive HCV patients than in non-depressed patients following therapy. Furthermore, transfection of a plasmid continuously expressing murine IFN-γ into normal mice significantly increased depression-like behavior. IFN-γ gene transfer also resulted in a decrease in serum TRP levels in the mice while KYN and 3-HK levels were significantly increased in both serum and frontal cortex. Genetic deletion of IDO1 in mice abrogated both the increase in depression-like behavior and the elevation in TRP metabolites’ levels, and the turnover of serotonin in the frontal cortex after IFN-γ gene transfer. These results indicate that the KYN pathway of IDO1-mediated TRP metabolism plays a critical role in depressive symptoms associated with IFN-α therapy.


Molecules | 2016

Near-Infrared Emitting PbS Quantum Dots for in Vivo Fluorescence Imaging of the Thrombotic State in Septic Mouse Brain

Yukio Imamura; Sayumi Yamada; Setsuko Tsuboi; Yuko Nakane; Yoshikazu Tsukasaki; Akihito Komatsuzaki; Takashi Jin

Near-infrared (NIR) fluorescent imaging is a powerful tool for the non-invasive visualization of the inner structure of living organisms. Recently, NIR fluorescence imaging at 1000–1400 nm (second optical window) has been shown to offer better spatial resolution compared with conventional NIR fluorescence imaging at 700–900 nm (first optical window). Here we report lead sulfide (PbS) quantum dots (QDs) and their use for in vivo NIR fluorescence imaging of cerebral venous thrombosis in septic mice. Highly fluorescent PbS QDs with a 1100 nm emission peak (QD1100) were prepared from lead acetate and hexamethyldisilathiane, and the surface of QD1100 was coated with mercaptoundecanoic acid so as to be soluble in water. NIR fluorescence imaging of the cerebral vessels of living mice was performed after intravascular injection (200–300 μL) of QD1100 (3 μM) from a caudal vein. By detecting the NIR fluorescence of QD1100, we achieved non-invasive NIR fluorescence imaging of cerebral blood vessels through the scalp and skull. We also achieved NIR fluorescence imaging of cerebral venous thrombosis in septic mice induced by the administration of lipopolysaccharide (LPS). From the NIR fluorescence imaging, we found that the number of thrombi in septic mice was significantly increased by the administration of LPS. The formation of thrombi in cerebral blood vessels in septic mice was confirmed by enzyme-linked immunosorbent assay (ELISA). We also found that the number of thrombi significantly decreased after the administration of heparin, an inhibitor of blood coagulation. These results show that NIR fluorescence imaging with QD1100 is useful for the evaluation of the pathological state of cerebral blood vessels in septic mice.


Neuroscience | 2004

Effects of ras and rap1 on electrical excitability of differentiated ng108-15 cells

Yukio Imamura; Naoya Matsumoto; Shunya Kondo; Hitoshi Kitayama; Makoto Noda

Effects of two small G-proteins, Rap1 and Ras, on the sodium channel activity in NG108-15 cells were studied using sindbis virus-mediated gene transfer. When an activated Rap1A mutant (Rap1-12V, the activated mutant of Rap1 carrying glycine to valine substitution at codon 12) or a dominant-negative H-Ras mutant (Ras-17N, carrying serine to asparagine substitution at codon 17) was expressed in differentiated NG108-15 cells, the proportion of cells generating action potential decreased and the amplitudes of sodium current diminished. This effect was sensitive to an inhibitor of protein kinase A. The effects of a cyclic AMP (cAMP) analog (dibutyl cAMP) on sodium current in these cells were biphasic: inhibitory at lower concentrations (<100 microM) and enhancing at higher concentrations (200-500 microM). The inhibitory phase of cAMP effect was suppressed by an activated Ras mutant (Ras-12V) while the enhancing phase was suppressed by Rap1-12V. These data are consistent with the model that Rap1 and Ras function as counteracting regulators of voltage-gated sodium current through cAMP-dependent mechanisms.

Collaboration


Dive into the Yukio Imamura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge