Yuko H. Itoh
Soka University of America
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuko H. Itoh.
Lipids | 2001
Ikuko Uda; Akihiko Sugai; Yuko H. Itoh; Toshihiro Itoh
Five types of molecular species of C40 isoprenoid chains, having different numbers of cyclopentane rings, were detected in the ether core lipid of Thermoplasma acidophilum. The average cyclization number of the hydrocarbon chains in the lipids increased with increasing growth temperatures.
International Journal of Systematic and Evolutionary Microbiology | 1998
Norio Kurosawa; Yuko H. Itoh; Toshie Iwai; Akihiko Sugai; Ikuko Uda; Naohiro Kimura; Tadao Horiuchi; Toshihiro Itoh
Three spherical thermoacidophilic archaea (strains TA-1T, TA-13, TA-14) were obtained from acidic hot springs located in Ohwaku Valley, Hakone, Japan. All the isolates are facultatively anaerobic, and grew optimally at around 85 degrees C, pH 2.0. Isolate TA-1T was characterized further. The G + C content of DNA from TA-1T is 33 mol%. Although these properties resemble those of the genus Acidianus, the sequence of the 16S rRNA gene from strain TA-1T was more similar to that of species of Stygiolobus than of Acidianus. DNA-DNA hybridization experiments also indicated that strain TA-1T is clearly distinguished phylogenetically from the members of Acidianus, Sulfolobus and Metallosphaera. On the basis of the distinct physiological and molecular properties, we describe the new strains as members of the new genus Sulfurisphaera. The type species of the genus is Sulfurisphaera ohwakuensis, and the type strain of the species is TA-1T (= IFO 15161T).
Lipids | 1995
Akihiko Sugai; Rie Sakuma; Ikuko Fukuda; Norio Kurosawa; Yuko H. Itoh; Kazuo Kon; Susumu Ando; Toshihiro Itoh
The major ether-type lipid structures ofSulfolobus acidocaldarius (ATCC33909) were composed of caldarchaeol and calditoglycerocaldarchaeol. However, the characterization by nuclear magnetic resonance spectroscopy and mass spectrometry showed that the structure of calditol in calditoglycerocaldarchaeol is not nonitol, 2-(1′,2′,3′-trihydroxypropyl)1,2,3,4,5,6-hexahydroxyhexane, but 2-hydroxymethyl-1-(2,3-dihydroxypropoxy),2,3,4,5-cyclopentanetetraol with an ether linkage in the molecule. Such an intermolecular ether linkage was resistant, to BCl3 treatment, but nonresistant to 57% HI degradation treatment conducted at 100°C for 60 h, producting 2-hydroxymethyl-1,2,3,4,5-cyclopentanepentaol from calditol as reaction product. Further, it was confirmed that the structure of calditol is essentially a derivative of glycerol, and hydrocarbon chains were conjugated to the glycerol-like site in the structure. The calditol with an ether linkage in the molecule suggested an important role regarding the properties of heat-resistance and acid-resistance observed inSulfolobales.
Biochimica et Biophysica Acta | 1999
Ikuko Uda; Akihiko Sugai; Kazuo Kon; Susumu Ando; Yuko H. Itoh; Toshihiro Itoh
Several novel neutral glycolipids (GL-1a, GL-1b, GL-2a, GL-2b and GL-2c) were isolated from Thermoplasma acidophilum by high-performance liquid chromatography using phenylboronic acid-silica and preparative thin-layer chromatography. The tentative structures of these lipids were characterized by the combination of gas-liquid chromatography, the methylation procedure, and (1)H-NMR and FAB-mass spectrometries. The lipophilic portion of the neutral glycolipids was composed of a simple molecular species named caldarchaeol (dibiphytanyl-diglycerol tetraether). The sugar moieties of these glycolipids were composed of gulose and glucose which formed monosaccharide residues on one side or both sides of the core lipids. Gulose was attached to the terminal glycerol OH group of the core lipid with a beta-configuration and glucose being attached with an alpha-configuration. The proposed structure of GL-1a was gulosylcaldarchaeol and that of GL-1b was glucosylcaldarchaeol. The structures of GL-2a, GL-2b, and GL-2c were the analogs of the caldarchaeol derivatives attached by a variety of gulosyl residues or glucosyl residues on both sides of the terminal OH groups.
Advances in Space Research | 2001
Yuko H. Itoh; Akihiko Sugai; Ikuko Uda; Toshihiro Itoh
Living organisms on the Earth which are divided into three major domains--Archaea, Bacteria, and Eucarya, probably came from a common ancestral cell. Because there are many thermophilic microorganisms near the root of the universal phylogenetic tree, the common ancestral cell should be considered to be a thermophilic microorganism. The existence of a cell is necessary for the living organisms; the cell membrane is the essential structural component of a cell, so its amphiphilic property is vital for the molecule of lipids for cell membranes. Tetraether type glycerophospholipids with C40 isoprenoid chains are major membrane lipids widely distributed in archaeal cells. Cyclization number of C40 isoprenoid chains in thermophilic archaea influences the fluidity of lipids whereas the number of carbons and degree of unsaturation in fatty acids do so in bacteria and eucarya. In addition to the cyclization of the tetraether lipids, covalent bonding of two C40 isoprenoid chains was found in hyperthermophiles. These characteristic structures of the lipids seem to contribute to their fundamental physiological roles in hyperthermophiles. Stereochemical differences between G-1-P archaeal lipids and G-3-P bacterial and eucaryal lipids might have occurred by the function of some proteins long after the first cell was developed by the reactions of small organic molecules. We propose that the structure of lipids of the common ancestral cell may have been similar to those of hyperthermophilic archaea.
Extremophiles | 2000
Toshie Iwai; Norio Kurosawa; Yuko H. Itoh; Tadao Horiuchi
Abstract Proliferating cell nuclear antigen (PCNA) is an essential component of the DNA replication and repair machinery in the domain Eucarya. Eukaryotes and euryarchaeotes, which belong to one subdomain of Archaea, possess a single PCNA homologue, whereas two distinct PCNA homologues have been identified from Sulfolobus solfataricus, which belongs to the other archaeal subdomain, Crenarchaeota. We have cloned and sequenced two genes of PCNA homologues from the thermoacidophilic crenarchaeon Sulfurisphaera ohwakuensis. These genes, referred to as the Soh PCNA A gene and the Soh PCNA B gene, were found to encode 245 amino acids (aa) (27 kDa) and 248 aa (27 kDa), respectively. In deduced amino acid sequences of both PCNA homologues, the motif L/I-A-P-K/R, implicated in binding of PCNA with replication factor C (RFC), was identified. Phylogenetic analysis of all available archaeal PCNA homologues suggests that crenarchaeal homologues are divided into two groups. Group A consists of Soh PCNA A, one of the S. solfataricus PCNA homologues, and one of the Aeropyrum pernix PCNA homologues. The other crenarchaeal homologues form group B. Crenarchaeal PCNA homologues constitute a monophyletic subfamily. These results suggest that the evolution of crenarchaeal PCNA homologues has been characterized by one or two gene duplication events, which are assumed to have occurred after the split of the crenarchaeal and euryarchaeal lineages.
Biochimica et Biophysica Acta | 2000
Ikuko Uda; Akihiko Sugai; Akio Shimizu; Yuko H. Itoh; Toshihiro Itoh
A novel phosphoglycolipid (GPL-K) was isolated from Thermoplasma acidophilum (ATCC 27658). The chemical components of GPL-K were analyzed by gas liquid chromatography and GC-MS. The sugar moiety of GPL-K and its anomeric region were analyzed by NMR assignment. The core lipid of GPL-K was caldarchaeol, and its main hydrocarbon chains were acyclic and monocyclic C(40) biphytanyl. The polar head groups were alpha-glucose and glycerophosphate. The negative FAB-MS spectrum of GPL-K confirmed that the lipid peak of m/z 1614 consists of a caldarchaeol (including one cyclopentane ring), a hexose sugar, and a glycerophosphate. We have proposed the tentative structure of GPL-K.
Extremophiles | 2009
Fumitoshi Manabe; Yuko H. Itoh; Hirofumi Shoun; Takayoshi Wakagi
Membranes of Sulfolobus tokodaii, a thermoacidophilic archaeon that grows optimally at pH 2–3, 75–80°C, show the ability to hydrolyze PPi with an optimum pH of 2–3. This acid PPase is proposed to be a dolicholpyrophosphatase that participates in glycoprotein biosynthesis. In the present study, the archaeal membranes hydrolyzed isopentenylpyrophosphate and geranylpyrophosphate, compounds related to dolicholpyrophosphate, at pH 3. However, the dolicholpyrophosphate-binding antibiotic bacitracin failed to inhibit the acid PPase. To investigate further the function and structure of the acid PPase, the gene was cloned and heterologously expressed in Escherichia coli. The membranes from recombinant E. coli showed PPase activity with similar pH and temperature dependence, substrate specificity, and kinetic parameters to those reported for Sulfolobus membranes. The acid PPase was solubilized and purified to electrophoretic homogeneity from the recombinant E. coli. The purified enzyme showed similar Km values for PPi, ATP, and ADP to the membrane-bound enzyme. Lipids from the Sulfolobus membranes enhanced the activity to about threefold. Studies involving deletion mutants indicated that basic amino acids in the N-terminal (Arg2 and Lys3), as well as the residues (4th–69th) possibly twice-spanning the membrane, are essential for integration of the enzyme into membranes.
Lipids | 2000
Ikuko Uda; Akihiko Sugai; Yuko H. Itoh; Toshihiro Itoh
The structures of three kinds of phospholipids (PL-X, PL-Y, and PL-T) isolated from Thermoplasma acid-ophilum have been characterized. The core lipid of PL-Y was caldarchaeol, and that of PL-X was archaeol. The composition of the hydrocarbon chains of the PL-T core lipid was C20 phytane and C40 isoprenoid in a molar ratio of 2 to 1. The major molecular species of the C40 isoprenoid was acyclic without the cyclopentane ring. These three kinds of intact phospholipids commonly had glycerophosphate residues as polar head groups. The structure of PL-T was characterized as trialkyl-type caldarchaetidylglycerol, PL-Y as caldarchaetidylglycerol, and PL-X as archaetidylglycerol.
Current Microbiology | 2000
Norio Kurosawa; Kouichi Fukuda; Yuko H. Itoh; Tadao Horiuchi
Abstract. Thermostable acid phosphatase (APase) from thermoacidophilic archaeon Sulfolobus acidocaldarius was isolated, partially purified, and characterized. The optimum pH and temperature of the enzyme for p-nitrophenylphosphate (pNPP) as a substrate were 5.0 and 70°C, respectively. The apparent Km value was 1.9 mM. This APase showed a native molecular mass of 20 kDa on a gel filtration chromatography. Of the APase activity, 60% remained after 60 min of heat treatment at 75°C. To confirm whether the APase is active in the monomeric form, we attempted to elute the enzyme from SDS-polyacrylamide gels with Disk electrophoresis apparatus and renature the enzyme. The APase activity was recovered up to 50% in the 14- to 35-kDa range, and maximum around 25 kDa. These results suggest that this APase is monomeric protein.