Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daisuke Kohno is active.

Publication


Featured researches published by Daisuke Kohno.


Neuron | 2008

5-HT2CRs Expressed by Pro-Opiomelanocortin Neurons Regulate Energy Homeostasis

Yong Xu; Juli E. Jones; Daisuke Kohno; Kevin W. Williams; Charlotte E. Lee; Michelle J. Choi; Jason G. Anderson; Lora K. Heisler; Jeffrey M. Zigman; Bradford B. Lowell; Joel K. Elmquist

Summary Drugs activating 5-hydroxytryptamine 2C receptors (5-HT2CRs) potently suppress appetite, but the underlying mechanisms for these effects are not fully understood. To tackle this issue, we generated mice with global 5-HT2CR deficiency (2C null) and mice with 5-HT2CRs re-expression only in pro-opiomelanocortin (POMC) neurons (2C/POMC mice). We show that 2C null mice predictably developed hyperphagia, hyperactivity, and obesity and showed attenuated responses to anorexigenic 5-HT drugs. Remarkably, all these deficiencies were normalized in 2C/POMC mice. These results demonstrate that 5-HT2CR expression solely in POMC neurons is sufficient to mediate effects of serotoninergic compounds on food intake. The findings also highlight the physiological relevance of the 5-HT2CR-melanocortin circuitry in the long-term regulation of energy balance.


Cell Metabolism | 2009

Nesfatin-1-Regulated Oxytocinergic Signaling in the Paraventricular Nucleus Causes Anorexia through a Leptin-Independent Melanocortin Pathway

Yuko Maejima; Udval Sedbazar; Shigetomo Suyama; Daisuke Kohno; Tatsushi Onaka; Eisuke Takano; Natsu Yoshida; Masato Koike; Yasuo Uchiyama; Ken Fujiwara; Takashi Yashiro; Tamas L. Horvath; Marcelo O. Dietrich; Shigeyasu Tanaka; Katsuya Dezaki; Koushi Hashimoto; Hiroyuki Shimizu; Masanori Nakata; Masatomo Mori; Toshihiko Yada

The hypothalamic paraventricular nucleus (PVN) functions as a center to integrate various neuronal activities for regulating feeding behavior. Nesfatin-1, a recently discovered anorectic molecule, is localized in the PVN. However, the anorectic neural pathway of nesfatin-1 remains unknown. Here we show that central injection of nesfatin-1 activates the PVN and brain stem nucleus tractus solitarius (NTS). In the PVN, nesfatin-1 targets both magnocellular and parvocellular oxytocin neurons and nesfatin-1 neurons themselves and stimulates oxytocin release. Immunoelectron micrographs reveal nesfatin-1 specifically in the secretory vesicles of PVN neurons, and immunoneutralization against endogenous nesfatin-1 suppresses oxytocin release in the PVN, suggesting paracrine/autocrine actions of nesfatin-1. Nesfatin-1-induced anorexia is abolished by an oxytocin receptor antagonist. Moreover, oxytocin terminals are closely associated with and oxytocin activates pro-opiomelanocortin neurons in the NTS. Oxytocin induces melanocortin-dependent anorexia in leptin-resistant Zucker-fatty rats. The present results reveal the nesfatin-1-operative oxytocinergic signaling in the PVN that triggers leptin-independent melanocortin-mediated anorexia.


European Journal of Neuroscience | 2004

Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus

Shinji Muroya; Hisayuki Funahashi; Akihiro Yamanaka; Daisuke Kohno; Kazuhide Uramura; Tadahiro Nambu; Megumi Shibahara; Motoki Kuramochi; Morikuni Takigawa; Masashi Yanagisawa; Takeshi Sakurai; Seiji Shioda; Toshihiko Yada

Orexin‐A and ‐B (hypocretin‐1 and ‐2) have been implicated in the stimulation of feeding. Here we show the effector neurons and signaling mechanisms for the orexigenic action of orexins in rats. Immunohistochemical methods showed that orexin axon terminals contact with neuropeptide Y (NPY)‐ and proopiomelanocortin (POMC)‐positive neurons in the arcuate nucleus (ARC) of the rats. Microinjection of orexins into the ARC markedly increased food intake. Orexins increased cytosolic Ca2+ concentration ([Ca2+]i) in the isolated neurons from the ARC, which were subsequently shown to be immunoreactive for NPY. The increases in [Ca2+]i were inhibited by blockers of phospholipase C (PLC), protein kinase C (PKC) and Ca2+ uptake into endoplasmic reticulum. The stimulation of food intake and increases in [Ca2+]i in NPY neurons were greater with orexin‐A than with orexin‐B, indicative of involvement of the orexin‐1 receptor (OX1R). In contrast, orexin‐A and ‐B equipotently attenuated [Ca2+]i oscillations and decreased [Ca2+]i levels in POMC‐containing neurons. These effects were counteracted by pertussis toxin, suggesting involvement of the orexin‐2 receptor and Gi/Go subtypes of GTP‐binding proteins. Orexins also decreased [Ca2+]i levels in glucose‐responsive neurons in the ventromedial hypothalamus (VMH), a satiety center. Leptin exerted opposite effects on these three classes of neurons. These results demonstrate that orexins directly regulate NPY, POMC and glucose‐responsive neurons in the ARC and VMH, in a manner reciprocal to leptin. Orexin‐A evokes Ca2+ signaling in NPY neurons via OX1R–PLC–PKC and IP3 pathways. These neural pathways and intracellular signaling mechanisms may play key roles in the orexigenic action of orexins.


Peptides | 2006

Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats.

Yutaka Oomura; N. Hori; Takemasa Shiraishi; Kohji Fukunaga; H. Takeda; M. Tsuji; T. Matsumiya; Masaru Ishibashi; Shuji Aou; X.L. Li; Daisuke Kohno; K. Uramura; H. Sougawa; Toshihiko Yada; Matthew J. Wayner; Kazuo Sasaki

Leptin, an adipocytokine encoded by an obesity gene and expressed in adipose tissue, affects feeding behavior, thermogenesis, and neuroendocrine status via leptin receptors distributed in the brain, especially in the hypothalamus. Leptin may also modulate the synaptic plasticity and behavioral performance related to learning and memory since: leptin receptors are found in the hippocampus, and both leptin and its receptor share structural and functional similarities with the interleukin-6 family of cytokines that modulate long-term potentiation (LTP) in the hippocampus. We therefore examined the effect of leptin on (1) behavioral performance in emotional and spatial learning tasks, (2) LTP at Schaffer collateral-CA1 synapses, (3) presynaptic and postsynaptic activities in hippocampal CA1 neurons, (4) the intracellular Ca(2+) concentration ([Ca(2+)](i)) in CA1 neurons, and (5) the activity of Ca(2+)/calmodulin protein kinase II (CaMK II) in the hippocampal CA1 tissue that exhibits LTP. Intravenous injection of 5 and/or 50mug/kg, but not of 500mug/kg leptin, facilitated behavioral performance in passive avoidance and Morris water-maze tasks. Bath application of 10(-12)M leptin in slice experiments enhanced LTP and increased the presynaptic transmitter release, whereas 10(-10)M leptin suppressed LTP and reduced the postsynaptic receptor sensitivity to N-methyl-d-aspartic acid. The increase in the [Ca(2+)](i) induced by 10(-10)M leptin was two times greater than that induced by 10(-12)M leptin. In addition, the facilitation (10(-12)M) and suppression (10(-10)M) of LTP by leptin was closely associated with an increase and decrease in Ca(2+)-independent activity of CaMK II. Our results show that leptin not only affects hypothalamic functions (such as feeding, thermogenesis, and neuroendocrine status), but also modulates higher nervous functions, such as the behavioral performance related to learning and memory and hippocampal synaptic plasticity.


Cell Metabolism | 2014

Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis

Kevin W. Williams; Tiemin Liu; Xingxing Kong; Makoto Fukuda; Yingfeng Deng; Eric D. Berglund; Zhuo Deng; Yong Gao; Tianya Liu; Jong Woo Sohn; Lin Jia; Teppei Fujikawa; Daisuke Kohno; Michael M. Scott; Syann Lee; Charlotte E. Lee; Kai Sun; Yongsheng Chang; Philipp E. Scherer; Joel K. Elmquist

The molecular mechanisms underlying neuronal leptin and insulin resistance in obesity and diabetes remain unclear. Here we show that induction of the unfolded protein response transcription factor spliced X-box binding protein 1 (Xbp1s) in pro-opiomelanocortin (Pomc) neurons alone is sufficient to protect against diet-induced obesity as well as improve leptin and insulin sensitivity, even in the presence of strong activators of ER stress. We also demonstrate that constitutive expression of Xbp1s in Pomc neurons contributes to improved hepatic insulin sensitivity and suppression of endogenous glucose production. Notably, elevated Xbp1s levels in Pomc neurons also resulted in activation of the Xbp1s axis in the liver via a cell-nonautonomous mechanism. Together our results identify critical molecular mechanisms linking ER stress in arcuate Pomc neurons to acute leptin and insulin resistance as well as liver metabolism in diet-induced obesity and diabetes.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus

Ki Woo Kim; Liping Zhao; Jose Donato; Daisuke Kohno; Yong Xu; Carol F. Elias; Charlotte E. Lee; Keith L. Parker; Joel K. Elmquist

The transcription factor steroidogenic factor 1 (SF-1) is exclusively expressed in the brain in the ventral medial hypothalamic nucleus (VMH) and is required for the development of this nucleus. However, the physiological importance of transcriptional programs regulated by SF-1 in the VMH is not well defined. To delineate the functional significance of SF-1 itself in the brain, we generated pre- and postnatal VMH-specific SF-1 KO mice. Both models of VMH-specific SF-1 KO were susceptible to high fat diet-induced obesity and displayed impaired thermogenesis after acute exposure to high fat diet. Furthermore, VMH-specific SF-1 KO mice showed significantly decreased LepR expression specifically in the VMH, leading to leptin resistance. Collectively, these results indicate that SF-1 directs transcriptional programs in the hypothalamus relevant to coordinated control of energy homeostasis, especially after excess caloric intake.


Journal of Clinical Investigation | 2012

FOXO1 in the ventromedial hypothalamus regulates energy balance

Ki Woo Kim; Jose Donato; Eric D. Berglund; Yun Hee Choi; Daisuke Kohno; Carol F. Elias; Ronald A. DePinho; Joel K. Elmquist

The transcription factor FOXO1 plays a central role in metabolic homeostasis by regulating leptin and insulin activity in many cell types, including neurons. However, the neurons mediating these effects and the identity of the molecular targets through which FOXO1 regulates metabolism remain to be defined. Here, we show that the ventral medial nucleus of the hypothalamus (VMH) is a key site of FOXO1 action. We found that mice lacking FOXO1 in steroidogenic factor 1 (SF-1) neurons of the VMH are lean due to increased energy expenditure. The mice also failed to appropriately suppress energy expenditure in response to fasting. Furthermore, these mice displayed improved glucose tolerance due to increased insulin sensitivity in skeletal muscle and heart. Gene expression profiling and sequence analysis revealed several pathways regulated by FOXO1. In addition, we identified the nuclear receptor SF-1 as a direct FOXO1 transcriptional target in the VMH. Collectively, our data suggest that the transcriptional networks modulated by FOXO1 in VMH neurons are key components in the regulation of energy balance and glucose homeostasis.


Molecular Endocrinology | 2011

Ghrelin Directly Stimulates Glucagon Secretion from Pancreatic α-Cells

Jen Chieh Chuang; Ichiro Sakata; Daisuke Kohno; Mario Perello; Sherri Osborne-Lawrence; Joyce J. Repa; Jeffrey M. Zigman

Previous work has demonstrated that the peptide hormone ghrelin raises blood glucose. Such has been attributed to ghrelins ability to enhance GH secretion, restrict insulin release, and/or reduce insulin sensitivity. Ghrelins reported effects on glucagon have been inconsistent. Here, both animal- and cell-based systems were used to determine the role of glucagon in mediating ghrelins effects on blood glucose. The tissue and cell distribution of ghrelin receptors (GHSR) was evaluated by quantitative PCR and histochemistry. Plasma glucagon levels were determined following acute acyl-ghrelin injections and in pharmacological and/or transgenic mouse models of ghrelin overexpression and GHSR deletion. Isolated mouse islets and the α-cell lines αTC1 and InR1G9 were used to evaluate ghrelins effects on glucagon secretion and the role of calcium and ERK in this activity. GHSR mRNA was abundantly expressed in mouse islets and colocalized with glucagon in α-cells. Elevation of acyl-ghrelin acutely (after sc administration, such that physiologically relevant plasma ghrelin levels were achieved) and chronically (by slow-releasing osmotic pumps and as observed in transgenic mice harboring ghrelinomas) led to higher plasma glucagon and increased blood glucose. Conversely, genetic GHSR deletion was associated with lower plasma glucagon and reduced fasting blood glucose. Acyl-ghrelin increased glucagon secretion in a dose-dependent manner from mouse islets and α-cell lines, in a manner requiring elevation of intracellular calcium and phosphorylation of ERK. Our study shows that ghrelins regulation of blood glucose involves direct stimulation of glucagon secretion from α-cells and introduces the ghrelin-glucagon axis as an important mechanism controlling glycemia under fasting conditions.


Neuroscience Letters | 2004

PACAP deficient mice display reduced carbohydrate intake and PACAP activates NPY-containing neurons in the rat hypothalamic arcuate nucleus

Masanori Nakata; Daisuke Kohno; Norihito Shintani; Yuriko Nemoto; Hitoshi Hashimoto; Akemichi Baba; Toshihiko Yada

Pituitary adenylate cyclase-activating polypeptide (PACAP) potentiates both insulin release from islets and insulin action in adipocytes. Therefore, this peptide is considered a regulator of glucose homeostasis. PACAP and its receptors are localized not only in the peripheral tissues but in the central nervous system. The present study examined whether PACAP regulates the feeding behavior and the activity of neurons in the hypothalamic arcuate nucleus (ARC), a feeding center. Food intake was measured in the PACAP knock-out mice. Cytosolic Ca2+ concentration ([Ca2+]i) in single neurons isolated from the ARC of rats was measured by fura-2 microfluorometry, followed by immunocytochemical staining with anti-NPY antiserum. PACAP knock-out mice showed a decrease in the intake of high carbohydrate, but not high fat, food. PACAP increased [Ca2+]i in NPY neurons of the ARC that are implicated in the feeding, particularly the carbohydrate ingestion. Agonists of PACAP receptors, PAC1-R and VPAC2-R, also increased [Ca2+]i. The present study, by demonstrating that PACAP directly reacts with the ARC NPY neurons to increase [Ca2+]i and that ingestion of the carbohydrate-rich food is reduced in PACAP-deficiency, suggests a facilitative role for PACAP in the carbohydrate intake.


Neuropeptides | 2012

Arcuate NPY neurons sense and integrate peripheral metabolic signals to control feeding

Daisuke Kohno; Toshihiko Yada

NPY neuron in the hypothalamic arcuate nucleus is a key feeding center. Studies have shown that NPY neuron in the arcuate nucleus has a role to induce food intake. The arcuate nucleus is structurally unique with lacking blood brain barrier. Peripheral energy signals including hormones and nutrition can reach the arcuate nucleus. In this review, we discuss sensing and integrating peripheral signals in NPY neurons. In the arcuate nucleus, ghrelin mainly activates NPY neurons. Leptin and insulin suppress the ghrelin-induced activation in 30-40% of the ghrelin-activated NPY neurons. Lowering glucose concentration activates 40% of NPY neurons. These results indicate that NPY neuron in the arcuate nucleus is a feeding center in which major peripheral energy signals are directly sensed and integrated. Furthermore, there are subpopulations of NPY neurons in regard to their responsiveness to peripheral signals. These findings suggest that NPY neuron in the arcuate nucleus is an essential feeding center to induce food intake in response to peripheral metabolic state.

Collaboration


Dive into the Daisuke Kohno's collaboration.

Top Co-Authors

Avatar

Toshihiko Yada

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tatsushi Onaka

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Yuko Maejima

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar

Joel K. Elmquist

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Fumihiko Maekawa

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsuya Dezaki

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Ken Fujiwara

Jichi Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge