Yuko Muroyama
Chiba University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuko Muroyama.
Nature | 2005
Yuko Muroyama; Yuko Fujiwara; Stuart H. Orkin; David H. Rowitch
Astrocytes are the most abundant and functionally diverse glial population in the vertebrate central nervous system (CNS). However, the mechanisms underlying astrocyte specification are poorly understood. It is well established that cellular diversification of neurons in the embryo is generated by position-dependent extrinsic signals and combinatorial interactions of transcription factors that direct specific cell fates by suppressing alternative fates. It is unknown whether a comparable process determines embryonic astrocyte identity. Indeed, astrocyte development is generally thought to take place in a position-independent manner. Here we show multiple functions of Stem cell leukaemia (Scl, also known as Tal1), which encodes a basic helix–loop–helix (bHLH) transcription factor, in the regulation of both astrocyte versus oligodendrocyte cell fate acquisition and V2b versus V2a interneuron cell fate acquisition in the p2 domain of the developing vertebrate spinal cord. Our findings demonstrate a regionally restricted transcriptional programme necessary for astrocyte and V2b interneuron development, with striking parallels to the involvement of SCL in haematopoiesis. They further indicate that acquisition of embryonic glial subtype identity might be regulated by genetic interactions between SCL and the transcription factor Olig2 in the ventral neural tube.
Development | 2007
Marta G. Del Barrio; Raquel Taveira-Marques; Yuko Muroyama; Dong-in Yuk; Shengguo Li; Mary Wines-Samuelson; Jie Shen; Hazel K. Smith; Mengqing Xiang; David H. Rowitch; William D. Richardson
In the developing central nervous system, cellular diversity depends in part on organising signals that establish regionally restricted progenitor domains, each of which produces distinct types of differentiated neurons. However, the mechanisms of neuronal subtype specification within each progenitor domain remain poorly understood. The p2 progenitor domain in the ventral spinal cord gives rise to two interneuron (IN) subtypes, V2a and V2b, which integrate into local neuronal networks that control motor activity and locomotion. Foxn4, a forkhead transcription factor, is expressed in the common progenitors of V2a and V2b INs and is required directly for V2b but not for V2a development. We show here in experiments conducted using mouse and chick that Foxn4 induces expression of delta-like 4 (Dll4) and Mash1 (Ascl1). Dll4 then signals through Notch1 to subdivide the p2 progenitor pool. Foxn4, Mash1 and activated Notch1 trigger the genetic cascade leading to V2b INs, whereas the complementary set of progenitors, without active Notch1, generates V2a INs. Thus, Foxn4 plays a dual role in V2 IN development: (1) by initiating Notch-Delta signalling, it introduces the asymmetry required for development of V2a and V2b INs from their common progenitors; (2) it simultaneously activates the V2b genetic programme.
Journal of Neuroscience Methods | 2013
Tatsuya Sato; Yuko Muroyama; Tetsuichiro Saito
In vivo electroporation has been widely used to transfect foreign genes into neural progenitors and analyze the function of genes of interest in the developing nervous system. However, it has not been thoroughly examined in the conditional regulation of exogenous genes in postmitotic neurons. Here we show that the combination of in vivo electroporation and the newest version of the tetracycline (Tet)-controlled gene regulatory (Tet-On) system efficiently induced gene expression in various types of neurons in mouse embryonic and postnatal tissues. In pyramidal neurons of the cerebral cortex, tetracycline-responsive element (TRE)-driven gene expression was induced in the presence of doxycycline (Dox). The induction occurred in a dose-dependent manner. The Dox-dependent induction was also observed in cerebellar Purkinje cells and spinal cord neurons. Moreover, the TRE-driven inducible expression of mammalian Barh1 (Mbh1) mimicked the phenotype of the ubiquitous expression of Mbh1 in the spinal cord. These results indicate that the combination of the Tet-On system and in vivo electroporation is useful for analyzing gene function specifically in postmitotic neurons.
Development | 2009
Yuko Muroyama; Tetsuichiro Saito
In the developing neocortex, neural progenitor cells (NPCs) produce projection neurons of the six cortical layers in a temporal order. Over the course of cortical neurogenesis, maintenance of NPCs is essential for the generation of distinct types of neurons at the required time. Notch signaling plays a pivotal role in the maintenance of NPCs by inhibiting neuronal differentiation. Although Hairy and Enhancer-of-split (Hes)-type proteins are central to Notch signaling, it remains unclear whether other essential effectors take part in the pathway. In this study, we identify Nepro, a gene expressed in the developing mouse neocortex at early stages that encodes a 63 kDa protein that has no known structural motif except a nuclear localization signal. Misexpression of Nepro inhibits neuronal differentiation only in the early neocortex. Furthermore, knockdown of Nepro by siRNA causes precocious differentiation of neurons. Expression of Nepro is activated by the constitutively active form of Notch but not by Hes genes. Nepro represses expression of proneural genes without affecting the expression of Hes genes. Finally, we show that the combination of Nepro and Hes maintains NPCs even when Notch signaling is blocked. These results indicate that Nepro is involved in the maintenance of NPCs in the early neocortex downstream of Notch.
Developmental Biology | 2010
Daisuke Kawauchi; Yuko Muroyama; Tatsuya Sato; Tetsuichiro Saito
During development, commissural neurons in the spinal cord project their axons across the ventral midline, floor plate, via multiple interactions among temporally controlled molecular guidance cues and receptors. The transcriptional regulation of commissural axon-associated receptors, however, is not well characterized. Spinal dorsal cells are transfated into commissural neurons by misexpression of Mbh1, a Bar-class homeobox gene. We examined the function of another Bar-class homeobox gene, Mbh2, and how Mbh1 and Mbh2 modulate expression of the receptors, leading to midline crossing of axons. Misexpression of Mbh1 and Mbh2 showed the same effects in the spinal cord. The competence of spinal dorsal cells to become commissural neurons was dependent on the embryonic stage, during which misexpression of the Mbh genes was able to activate guidance receptor genes such as Rig1 and Nrp2. Misexpression of Lhx2, which has been recently shown to be involved in Rig1 expression, activated Rig1 but not Nrp2, and was less effective in generating commissural neurons. Moreover, expression of Lhx2 was activated by and required the Mbh genes. These findings have revealed a transcriptional cascade, in which Lhx2-dependent and -independent pathways leading to expression of guidance receptors branch downstream of the Mbh genes.
eNeuro | 2016
Aya Murai; Ryo Iwata; Satoshi Fujimoto; Shuhei Aihara; Akio Tsuboi; Yuko Muroyama; Tetsuichiro Saito; Kazunori Nishizaki; Takeshi Imai
Visual Abstract The glomerular map in the olfactory bulb (OB) is the basis for odor recognition. Once established during development, the glomerular map is stably maintained throughout the life of an animal despite the continuous turnover of olfactory sensory neurons (OSNs). However, traumatic damage to OSN axons in the adult often leads to dysosmia, a qualitative and quantitative change in olfaction in humans. A mouse model of dysosmia has previously indicated that there is an altered glomerular map in the OB after the OSN axon injury; however, the underlying mechanisms that cause the map distortion remain unknown. In this study, we examined how the glomerular map is disturbed and how the odor information processing in the OB is affected in the dysosmia model mice. We found that the anterior–posterior coarse targeting of OSN axons is disrupted after OSN axon injury, while the local axon sorting mechanisms remained. We also found that the connectivity of mitral/tufted cell dendrites is reduced after injury, leading to attenuated odor responses in mitral/tufted cells. These results suggest that existing OSN axons are an essential scaffold for maintaining the integrity of the olfactory circuit, both OSN axons and mitral/tufted cell dendrites, in the adult.
PLOS Genetics | 2016
Yuko Muroyama; Atsushi Baba; Motoo Kitagawa; Tetsuichiro Saito
Mitral cells (MCs) of the mammalian olfactory bulb have a single primary dendrite extending into a single glomerulus, where they receive odor information from olfactory sensory neurons (OSNs). Molecular mechanisms for controlling dendritic arbors of MCs, which dynamically change during development, are largely unknown. Here we found that MCs displayed more complex dendritic morphologies in mouse mutants of Maml1, a crucial gene in Notch signaling. Similar phenotypes were observed by conditionally misexpressing a dominant negative form of MAML1 (dnMAML1) in MCs after their migration. Conversely, conditional misexpression of a constitutively active form of Notch reduced their dendritic complexity. Furthermore, the intracellular domain of Notch1 (NICD1) was localized to nuclei of MCs. These findings suggest that Notch signaling at embryonic stages is involved in the dendritic complexity of MCs. After the embryonic misexpression of dnMAML1, many MCs aberrantly extended dendrites to more than one glomerulus at postnatal stages, suggesting that Notch signaling is essential for proper formation of olfactory circuits. Moreover, dendrites in cultured MCs were shortened by Jag1-expressing cells. Finally, blocking the activity of Notch ligands in OSNs led to an increase in dendritic complexity as well as a decrease in NICD1 signals in MCs. These results demonstrate that the dendritic complexity of MCs is controlled by their presynaptic partners, OSNs.
Development Growth & Differentiation | 2015
Masakazu Hashimoto; Tatsuya Sato; Yuko Muroyama; Lisa Fujimura; Masahiko Hatano; Tetsuichiro Saito
We generated knockout (KO) mice of Nepro, which has been shown to be necessary to maintain neural progenitor cells downstream of Notch in the mouse developing neocortex by using knockdown experiments, to explore its function in embryogenesis. Nepro KO embryos were morphologically indistinguishable from wild type (WT) embryos until the morula stage but failed in blastocyst formation, and many cells of the KO embryos resulted in apoptosis. We found that Nepro was localized in the nucleolus at the blastocyst stage. The number of nucleolus precursor bodies (NPBs) and nucleoli per nucleus was significantly higher in Nepro KO embryos compared with WT embryos later than the 2‐cell stage. Furthermore, at the morula stage, whereas 18S rRNA and ribosomal protein S6 (rpS6), which are components of the ribosome, were distributed to the cytoplasm in WT embryos, they were mainly localized in the nucleoli in Nepro KO embryos. In addition, in Nepro KO embryos, the amount of the mitochondria‐associated p53 protein increased, and Cytochrome c was distributed in the cytoplasm. These findings indicate that Nepro is a nucleolus‐associated protein, and its loss leads to the apoptosis before blastocyst formation in mice.
Archive | 2015
Tatsuya Sato; Yuko Muroyama; Tetsuichiro Saito
Neuroscience Research | 2011
Tatsuya Sato; Yuko Muroyama; Tetsuichiro Saito